
GRAPHICAL
ENUMERATION



GRAPHICAL
ENUMERATIO N

Frank Harary

UNIVERSITY OF MICHIGA N
ANN ARBO R

Edgar Al . Palmer

MICHIGAN STATE UNIVERSITY`. .
EAST LANSING

ACADEMIC PRESS New York and London

	

1973



COPYRIGHT © 1973, BY ACADEMIC PRESS, INC .
ALL RIGHTS RESERVED .
NO PART OF THIS PUBLICATION MAY BE REPRODUCED O R
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONI C
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR AN Y
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOU T
PERMISSION IN WRITING FROM THE PUBLISHER .

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 1000 3

United Kingdom Edition published b y
ACADEMIC PRESS, INC . (LONDON) LTD.
24/28 Oval Road, London NW I

LIBRARY OF CONGRESS CATALOG CARD NUMBER : 72-8265 3

AMS (MOS) 1970 Subject Classification : 05C3 0

PRINTED IN THE UNITED STATES OF AMERICA



How do I love thee ?
Let me count the ways .

Elizabeth Barrett Brownin g

To Jayne and Jane

00126 7



The Royal Mathematician was a bald-headed ,
nearsighted man, with a skullcap on his head and a
pencil behind each ear . He wore a black suit wit h
white numbers on it .

"I don ' t want to hear a long list of all the thing s
you have figured out for me since 1907, " the King
said to hi,n . "I just want you to figure out right no w
how to get the moon for the Princess Lenore. [Fhen
she gets the moon, she will be well again ."

"I am glad you mentioned all the things I hav e
figured out for you since 1907," said the Royal
Mathematician . "It so happens that I have a list
of them with me . "

James Thurber, "Many Moons"
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Enumerate, count, number, call over, run over, tak e
an account of, call the roll, muster, poll, sum up ,
cast up, tell off, cipher, reckon, reckon up, estimate ,
compute, calculate .

Roget, "Thesaurus"

PREFACE

The first question asked by many students in a course in graph theory i s
"How many graphs are there?" This is also the first problem we attempted .
As circumstances had it, we learned by a most circuitous procedure tha t
George Polya had already counted graphs with a given number of points an d
lines. Starting from his formulas, it was a relatively routine matter to enumer -
ate rooted graphs, connected graphs, and directed graphs. Subsequently ,
we counted various other types of graphs and when we had temporaril y
exhausted all the easy counting problems, we published a paper presentin g
27 unsolved enumeration problems . By now, almost half of these problem s
have been resolved, and successive revisions of the original list of 27 unsolved
enumeration problems were prepared . Our closing chapter brings this topic
up to date .

Although Euler counted certain types of triangulated polygons in th e
plane, the major activity in graphical enumeration was launched in the
preceding century . Cayley counted three types of trees : labeled trees, rooted
trees,and ordinary trees . Even earlier, the world's first electrical engineer ,

xi
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Kirchhoff, implicitly had found the number of spanning trees in a give n
connected graph, and thus in particular, the number of labeled trees . In
one of the earliest instances of support of combinatorial research by th e
military (aside from Archimedes), Major P . A. MacMahon wrote a compre-
hensive treatise that touched on graphical enumeration, but only peripherally .
There is another pre-Polya innovator in the art of combinatorial enumera-
tion. This largely unsung hero, J . Howard Redfield, wrote exactly on e
paper on the subject ; in it he anticipated many of the counting methods and
results found subsequently . His paper went almost completely unrecognized .
Long after Polya's great work served as the impetus for most of the con -
temporary research on the counting of graphs, proper acknowledgment t o
Redfield was accorded .

Although we are restricting ourselves to the enumeration of variou s
kinds of graphs, there are many types of configurations that can be so handled .
The following structures, none of which is blatantly graphical at first blush ,
have all been enumerated by clever transformations into graphs or sub -
graphs : automata, finite topologies, boolean functions, necklaces, an d
chemical isomers .

It is not only true that a full book can be written on each of our ten
chapters, but a fortiori, an entire book has been written on one of the section s
of our first chapter : a formal but comprehensive monograph entitle d
"Counting Labeled Trees" by John Moon . Clearly the material to be included
in each chapter must necessarily be a matter of personal taste.

The plan of the book is as follows . We begin with labeled graphs in
Chapter 1, both in order to get them out of the way and because they are muc h
easier to count . We then develop the basic enumeration theorem of Polya i n
Chapter 2. With this available, we count in Chapter 3 an enormous variety o f
trees and then in Chapters 4 and 5 various kinds of graphs and digraphs .
Chapter 6 presents the powerful Power Group Enumeration Theorem an d
shows how to apply it . Chapter 7, Superposition, counts those configuration s
that can be constructed by "plopping things on top of other things ." Non-
separable graphs, also known as blocks, are then counted in Chapter 8 using
the ingenious methods conceived by the hero of unsolved enumeratio n
problems, R. W. Robinson. Some mathematicians feel that a knowledge o f
the order of magnitude of the number of configurations of a certain type i s
more important than the exact number in a form which is inconvenient fo r
calculations . Rather than report lower and upper bounds, we develop exact
asymptotic numbers in Chapter 9 for several different graphical structures .
Necessarily this is only illustrative, as again a whole book can be writte n
on graphical asymptotics . Finally as a special feature we conclude wit h
a new comprehensive definitive list of unsolved graphical enumeratio n
problems.
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The exercises range widely in difficulty from routine to intractible . Thus
not all the exercises are intended to be worked out in detail by the reader .
Frequently, counting formulas are given in exercises in order to include thi s
information in the book. There are also abundantly many exercises within
the text, not labeled as such, in the form of results whose proofs are omitted .
We have found it convenient to indicate Equation 7 of Section 1 of Chapter 3
by the ordered triple denoted (3 .1.7) and trust that the reader will forgive u s
for using this complicated notation. The end of a proof is marked by the
symbol // .

It is our hope and belief that the present volume will make enumeratio n
techniques more available and more unified. In turn this should serve as a
stimulus for the investigation of open counting questions .
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Don ' t rely too much on labels,

For too often they are fables.

C. H. Spurgeon

Chapter 1 LABELE D
ENUMERATION

We consider labeled enumeration problems first because they alway s
appear to be much easier to solve than the corresponding unlabeled prob-
lems. For example, the number of labeled graphs is instantly found fro m
first principles, while the determination of the number of unlabeled graph s
requires a considerable amount of combinatorial theory including Pblya' s
Theorem .

We shall present in this chapter a selected sample of some of the out -
standing and interesting solutions to labeled enumeration problems in
graph theory, including the determination of the number of labeled graphs ,
connected graphs, blocks, eulerian graphs, k-colored graphs, acyclic digraphs ,
trees, and eulerian trails in an eulerian digraph. Often several different solu-
tions to the same problem will be provided so that the reader has an oppor-
tunity to become acquainted with a variety of useful tricks, skills, devices ,
and schemes . For example, we shall see that when dealing with labele d
enumeration problems, the exponential generating functions provide a
natural vehicle for carrying sufficient information for a solution. On the
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1 LABELED ENUMERATIO N

other hand, by examining a small amount of data, one can often quickl y
find a required formula which can then be verified by an induction argument .

1 .1 THE NUMBER OF WAYS TO LABEL A GRAP H

A graph G of order p consists of a finite nonempty set V = V(G) of p
points together with a specified set X of q unordered pairs of distinct points ;
this automatically excludes loops (lines joining a point to itself) and multipl e
lines (in parallel) . A pair x = {u, v} of points in X is called a line of G and
x is said to join u and v. The points u and v are adjacent ; u and x are incident
with each other, as are v and x . A graph with p points and q lines is called a
(p, q) graph. Our terminology will follow that in the book on graph theor y
[H I] . However, we plan to include most definitions .

It is most convenient and illuminating to represent graphs by diagrams .
Consider the graph G chosen at random with

V = {v1, v2 , v3, v4}

and

X = {{v l , v 2}, {v 2 , v3}, {v3, v4}, {v4 , v l }, {v 1 , v3}} .

This is illustrated by the diagram in Figure 1 .1 .1. Only the names of th e
points have been used in this diagram . The five lines of G are represented b y
the line segments which join the pairs of points in the figure . The diagrams
of all graphs of order 4, arranged by number of lines, are shown in Figure 1 .1 .2 .
Henceforth we shall also refer to such diagrams as graphs by an abuse o f
language which will cause no confusion.

In a labeled graph of order p, the integers from 1 through p are assigned to
its points. For example, the random graph (of Figure 1 .1 .1) can be labeled
in the six different ways indicated in Figure 1 .1 .3 .

Thus two labeled graphs G 1 and G 2 are considered the same and called
isomorphic if and only if there is a 1—1 map from V(G 1 ) onto V(G 2) which
preserves not only adjacency but also the labeling . One can easily see then ,
that all of the different labelings of the random graph are displayed i n
Figure 1 .1 .3 .

0

0

0

V4

V2

V3

Figure 1 .1 . 1
The graph with four points and five lines .
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3

Figure 1 .1 . 2
The 11 graphs of order 4 .

Two natural questions now arise. The first asks : How many labeled
graphs of order p are there? The second is : How many graphs of order p
are there? The first question is so easy that we deal with it next . The second i s
much more difficult and will be treated in Chapter 4.

We shall answer the easier question by generalizing the problem ever s o
slightly to that of finding the number of labeled graphs with a given numbe r
of points and lines. Let Gp(x) be that polynomial which has as the coefficien t
of the number of labeled graphs of order p which have exactly k lines .
Such a polynomial is ordinarily called the "ordinary generating function "
for labeled graphs with a given number of points and lines . If V is a set of p
points, there are (2) distinct unordered pairs of these points . In any labeled
graph with point set V, each pair of points are either adjacent or not adjacent .
The number of labeled graphs with precisely k lines is therefore (f) .

Theorem The ordinary generating function Gp(x) for labeled graphs of
order p is given by

m
Gp(x) =

	

xk = (1 + x)m
k=O k

where rn = (?) .

Since Gp(x) = (1 + x)m and the number Gp of labeled graphs of order p is
Gp(1), we see that

Gp = 2(D .

	

(1 .1 .2)

4

	

1

Figure 1 .1 . 3
The six different labelings of a graph .
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t

!OO \ AL '\ A0 0 0—0
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3 2 3 2

	

3 2 3 2 3 2 3 2 3 2

	

3

Figure 1 .1 .4

The eight labeled graphs of order 3 .

For p = 3 ; this formula is vividly illustrated in Figure 1 .1 .4. Thus ther e
are eight labeled graphs of order 3 but only four graphs of order 3 ; and there
are 64 labeled graphs of order 4, but only 11 graphs of order 4 . The question
then arises : In how many ways can a given graph be labeled? To provide an
answer, we must consider the symmetries or automorphisms of a graph .
A 1—1 map a from V(G) to V(G 1 ) that preserves adjacency is naturally calle d
an isomorphism . If G 1 = G, then a is an automorphism of G. The collection
of all automorphisms of G, denoted F(G), constitutes a group called the group
of G . Thus the elements of F'(G) are permutations acting on V. For example ,
the random graph G has exactly four automorphisms, so that F(G) contains
the permutations in

/

the usual cyclic representation :

(v1)(v2)(v3)(v4),

	

(v 1)(v 3)(v2 v4),

	

(v1v3)(v2)(v4),

	

and

	

( i ' 1 v3)(v2 v4) •
Let s(G) = IF'(G)I, the order of the group G, denote the number of symmetrie s
of G. Then the answer to the labeling problem posed above is provided i n
the following theorem .

Theorem The number of ways of labeling a given graph G of order p i s

1(G) = p!/s(G) .

	

(1 .1 .3)

The proof is most easily obtained using some of the group theoreti c
results of Chapters 2 and 4, see [HPR1] . To illustrate, we simply observe that
the random graph G has p !/s(G) = 4 !/4 = 6 labelings, and the six different
labeled graphs displayed in Figure 1 .1 .3 complete the verification of (1 .1 .3)
for this graph G .

Although this theorem is stated only for graphs, similar versions of i t
hold for any finite structures with specified automorphism groups, such a s
rooted graphs, directed graphs, other relations of various types, simplicia l
complexes, functions, etc .

A directed graph or digraph D of order p consists of a finite nonempty se t
V of distinct objects called points together with a specified set X of q ordered
pairs of distinct points of V. A pair x = (u, v) of points in X is called an arc
of D and u is said to be adjacent to v ; u and x are incident with each other,
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AA A

0

0

	

0

Figure 1 .1 . 5

The 16 digraphs of order 3 .

as are v and x . The outdegree of point u is the number of arcs with u as first
point ; the indegree as second point. The diagrams of all digraphs of order 3
are shown in Figure 1 .1 .5. As in the case of graphs, we refer to the diagram s
themselves as digraphs .

Labeled digraphs of order p have the different integers 1 through p
assigned to their points and the group of a digraph D, denoted F(D), consists
of the permutations of the points V(D) of D that preserve adjacency . Since
the number of labeled digraphs of order p with exactly k lines is (P(Pk 1) ),

we have the following results which correspond to (1 .1 .1) and (1 .1 .2) .

Theorem The ordinary generating function DP(x) for labeled digraph s
of order p is given by

P(P- 1) p(p — 1 )
DP(x) _ E

	

xk = (1 + x)P(P- 1) .
k=O

	

k

Obviously DP (x) = G;(x) so that

DP(1) = 2P(P -1 ) = Gp(1) .

	

(1 .1 .5)

In a round-robin tournament, a given collection of players play a gam e
in which the rules do not allow for a draw . Any two players encounter each
other just once and exactly one emerges victorious . Therefore a tournament
is a digraph in which every pair of points are joined by exactly one arc. We
conclude this section by observing that the number of labeled tournaments
of order p is precisely 2(f) , the number, as in (1 .1 .2), of labeled graphs of

(1 .1.4)
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AAAAA .A
Figure 1 .1 .6

The eight labeled tournaments of order 3 .

order p. This observation is verified for p = 3 by Figures 1 .1 .2 and 1 .1 .6 .
Furthermore, the natural correspondence between these two classes of
graphs is indicated by the order in which they appear in the two figures .
Each labeled tournament corresponds to that labeled graph in which th e
points with labels i and j are adjacent if and only if i < j and the arc from
i to j is present in the tournament .

1 .2 CONNECTED GRAPH S

Let G be a graph and let vo, v 1 , v2 , . . . , v„ be a sequence of points of G
such that v i is adjacent to vi+ 1 for i = 0 to n — 1 . Such a sequence together
with these n lines, is called a walk of length n . If the lines {vi, vi+1} for i = 0
to n are distinct, the walk is called a trail. If all the points are distinct (and
hence the lines), it is called a path of length n. Then a connected graph is a
graph in which any two points are joined by a path ; see Figure 1 .2.1. The
number of labeled connected graphs of order 4 can be calculated by brut e
force if we apply (1 .1 .3) to each of the six graphs in Figure 1 .2.1 . The orders
of the groups of these graphs, from left to right, are 2, 3, 2, 8, 4, 24 . Then from
(1 .1 .3) it follows that the number of labeled, connected graphs of order 4 is 38 .
This information provides no hint as to how to determine a formula for C,, ,
the number of connected, labeled graphs of order p . To that end we requir e
the next few definitions .

A subgraph H of a graph G has V(H) c V(G) and X(H) c X(G) . A
component of a graph is a maximal, connected subgraph. A rooted graph
has one of its points, called the root, distinguished from the others. Two
rooted graphs are isomorphic if there is a 1—1 function from the point set o f
one graph onto that of the other which preserves not only adjacency bu t
also the roots. A similar requirement serves to describe rooted, labeled
graphs. These ideas can now be used to obtain the following recursive formula .

Figure 1 .2 . 1
The six connected graphs of order 4 .
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Theorem The number C p of connected, labeled graphs satisfie s

1 p-1

	

p
Cp = 201) - -

	

k

	

2( 2 ) Ck .

	

(1 .2 .1 )
Pk=1

	

k

To prove (1 .2.1) we observe that a different rooted, labeled graph i s
obtained when a labeled graph is rooted at each of its points. Hence the
number of rooted, labeled graphs of order p is pGp . The number of rooted,
labeled graphs in which the root is in a component of exactly k points i s
kC k (k)Gp _ k . On summing from k = 1 to p, we arrive again at the number of
rooted, labeled graphs, namel y

p

	

p
~ k C kGp-k•

	

//
k 1

	

k

The values of Cp in Table 1 .2.1 are listed in [S4] .

TABLE 1 .2 . 1

p

	

1

	

2

	

3

	

4

	

5 6

	

7

	

8

	

9
C p

	

1

	

1

	

4

	

38

	

728

	

26 704

	

1 866 256

	

251 548 592

	

66 296 291072

It is important to have at hand the concept of the exponential generating
function and some of its associated properties . We shall therefore introduc e
these functions now and use them to provide an alternative form of (1 .2.1) .

For each k = 1, 2, 3, . . . , let ak be the number of ways of labeling al l
graphs of order k which have some property P(a). Then the formal power
series

a(x) =

	

akxk/k!

	

(1 .2 .2)
k= 1

is called the exponential generating function for the class of graphs at hand .
Suppose also that

b(x) =

	

bkxk/k !

	

(1 .2 .3 )
k= 1

is another exponential generating function for a class of graphs with propert y
P(b).

The next lemma provides a useful interpretation of the coefficients o f
the product a(x)b(x) of these two generating functions .
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Labeled Counting Lemma The coefficient of xk/k! in a(x)b(x) is the
number of ordered pairs (G 1 , G2) of two disjoint graphs, where G 1 has
property P(a), G2 has property P(b), k is the number of points in G1 u G 2
and the labels 1 through k have been distributed over G 1 u G 2 .

To illustrate, let C(x) be the exponential generating function for labeled,
connected graphs,

C(x) = E Ckxk/k ! .

	

(1 .2.4)
k= 1

Then C(x)C(x) is the generating function for ordered pairs of labeled, con-
nected graphs . On dividing this series by 2, we have the generating functio n
for labeled graphs which have exactly two components . Similarly C"(x)/n !
has as the coefficient of xk/k ! , the number of labeled graphs of order k with
exactly n components . If we let G(x) be the exponential generating function
for labeled graphs, we then hav e

G(x) = E C"(x)/n ! .

	

(1 .2.5)
n= 1

Thus we have the following exponential relationship for G(x) and C(x )
found by Riddell [R14] .

Theorem The exponential generating functions G(x) and C(x) for labele d
graphs and labeled connected graphs come to terms in the following relatio n

1 + G(x) = e c(" ) .

	

(1 .2.6)

Note that (1 .2.6) remains true for multigraphs (Gilbert, [G2]). Riordan
noticed the remarkable coincidence that Cp = Jp(2), where Jp(x) is the
enumerator of trees by number of inversions [MR1] and thus obtained th e
following recurrence for Cp :

p— 1

	

2
CP

	

=
P

	

(2k — 1 )CkCp-k•

	

(1 .2.7)
k=1 k — 1

Furthermore, it is evident that if the exponential generating function for a
class of graphs is known, then the exponential generating function for th e
corresponding connected graphs will be the formal logarithm of the firs t
series, just as in (1 .2.6) for all graphs .

Therefore we can state the following general result .
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Corollary If E''.=o A mx'" = exp{Ym=1 amxm }, then for m > 1

m- 1

	

am = Am — m - 1 E ka kA m-k .

	

(1 .2 .8 )
k= 1

1 .3 BLOCKS

The removal of a point v from a graph G results in that subgraph G — v
of G consisting of all points of G except v, and all lines not incident with v .
A cutpoint of a graph is one whose removal increases the number of com-
ponents . A block or nonseparable graph is connected, nontrivial, and has n o
cutpoints. We shall follow the procedure of Riddell [R14] and Ford an d
Uhlenbeck [FU1] in establishing relations between the generating functions
for labeled blocks and labeled connected graphs . The approach used here i s
successful only for the labeled case . We shall see in Chapter 8 that a fa r
more complex method is required for the enumeration of unlabeled blocks .

Since we are dealing with a labeled problem, we shall use exponentia l
generating functions . Let B(x) denote the series for labeled blocks so tha t

	

B(x) = E Bpxp/p!

	

(1 .3 .1 )
p= 2

where Bp is the number of blocks with p points. It follows from formul a
(1 .1 .3) of the theorem on the number of ways to label a graph that the co -
efficient of xp in B(x) is the sum of the reciprocals of the orders of the group s
of the (unlabeled) blocks with p points . Therefore from Figure 1 .3 .1 in which
the small blocks are displayed together with their group orders, we have the
first few terms of B(x) :

	

2

	

3

	

4
B(x)=-x2+6x3+. ~x4+ . . .=12~+14i+1041+ . . . .

(1 .3 .2)

Our aim is to prove the following theorem where C'(x) and B'(x) denot e
the usual formal derivative .

24

Figure 1 .3. 1

The small blocks and their symmetry numbers .
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Theorem The exponential generating functions B(x) and C(x) for labeled
blocks and connected graphs are related b y

log C'(x) = B'(xC'(x)) .

	

(1 .3 .3)

To verify this identity, let R(x) be the exponential generating functio n
for rooted, connected, labeled graphs, so that the coefficient of xp in R(x) is
Rp/p ! . Since Rp = pCp for all p we hav e

R(x) = x dC(x)/dx .

	

(1 .3 .4)

We denote by R n(x) the exponential series for rooted, connected, labele d
graphs in which exactly n blocks contain the root . Thus R0(x) = x and

R(x) = E. Rn(x) .

	

(1 .3 .5)
n= 0

Furthermore, R 1(x) enumerates rooted, connected, labeled graphs with
exactly one block incident with the root . Suppose S(x) is the correspondin g
series in which the root is unlabeled ; that is, the coefficient of xp/p! is the
number of rooted, connected graphs with p + 1 points but the root is un-
labeled. Then it follows from the Labeled Counting Lemma that R 1(x) =
xS(x), and hence S(x) = R1 (x)/x.

Again by the lemma, (R1(x)/x)"/n! enumerates n-sets of such graphs
where each root is unlabeled. If these n roots are identified and a single labe l
is introduced for them, we shall have enumerated rooted, labeled, connecte d
graphs with exactly n blocks at the root . Restoration of the labeled root i s
accomplished simply by multiplying by x :

Rn(x ) = x (R 1(x)/x) "/n !

Combining the last two formulas yields

R(x) = x exp(R1 (x)/x) .

We now seek to express R 1 (x) in terms of B(x) and R(x) . Observe that
(R(x)/x)1c-1 counts (k — 1)-tuples of rooted, labeled, connected graphs i n
which the k — 1 roots are neither labeled nor included in the point count .
That is, the coefficient of xp/p ! in this series is the number of (k — 1)-tuples
of such graphs with p + k — 1 points including the k — 1 roots and no
labels on the roots . If we multiply this series by kBk , we have counted rooted ,
connected graphs with one block at the root and in which only the labels 1
through k have been used for this block . Finally, to scatter all the label s
we need only multiply by x k/k! . Hence xBk(R(x))k-'/(k — 1)! counts rooted ,
labeled, connected graphs with exactly one block of order k at the root .

(1 .3.6)

(1 .3.7)
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Adding we have

R 1(x ) = x

	

Bk(R(x))k-'/(k — 1)! .

	

(1 .3.8)
k= 2

On combining the last two formulas which both involve R 1 (x) the result i s

co

log(R(x)/x) =

	

Bk(R(x))k-'/(k — 1)! .

	

(1 .3 .9)
k= 2

The proof is completed on substitution of R(x) = xC'(x) from (1 .3 .4) in

0 .3.9) .

	

//

By comparing coefficients of xP on each side of (1 .3.3), we can arrive at a
recursive formula for B . The coefficient of xP on the left side of (1 .3 .3) can be
expressed in terms of the coefficients of C(x) using (1 .2.8) . For convenience
let h(p, k) denote the coefficient of x P in (xC'(x))k so that the coefficient of xP
in the right side of (1 .3.3) i s

P
Bkh(p, k — 1)/(k — 1)! .

	

(1 .3.10)
k= 2

Hence the number of labeled blocks BP can be expressed in terms of th e
numbers CP of labeled connected graphs using (1 .3.3) . The method described
here can be extended to include the number of lines as a second paramete r
without much more difficulty .

1 .4 EULERIAN GRAPHS

In this section we shall derive, following the procedure of Read [R5 ]
rather closely, the generating function for labeled eulerian graphs . The
degree of a point v in a graph G is the number, denoted deg v, of lines of G
which are incident with v . If every point of G has even degree, G is called
even. An eulerian graph is a connected, even graph .

Let WP be the number of labeled, even graphs of order p . Then the follow-
ing rather surprising result occurs .

Theorem The number of labeled, even graphs of order p equals the numbe r
of labeled graphs of order p — 1 :

WP = 2(' 2 `).

	

(1 .4 .1)
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To prove this result we now establish a 1—1 correspondence betwee n
these two classes of graphs. Consider any labeled graph G of order p — 1 .
Now G must have an even number of points of odd degree . Next we add to G
a new point v which is assigned the label p. Finally, we construct a graph G '
from G and v by specifying that v is adjacent to each of the points of G whic h
has odd degree . This graph G' is a labeled even graph of order p. It is easily
seen that this correspondence is 1—1, and that every labeled even graph o f
order p can be obtained in this way from some labeled graph of order p — 1 .

//

We shall use generating functions to obtain a formula for the number of
labeled eulerian graphs . Therefore let W(x) be the exponential generating
function for labeled even graphs, so tha t

W(x) = E 2'P ;1)xp/p! .

	

(1 .4.2 )
p= 1

Next, let Up be the number of labeled, eulerian graphs of order p so that

U(x) _ E Upxp/p !

	

(1 .4 .3 )
p= 1

is the corresponding exponential generating function .

Theorem The exponential generating function U(x) for labeled eulerian
graphs satisfies

U(x) = log(W(x) + 1),

	

(1 .4.4)

l p- 1

Up = 2 (pz 1) - -

	

k k 2(p-z-1)Uk

	

(1 .4.5 )
p k= 1

Formula (1 .4.4) follows from the fact mentioned after (1 .2.6) that if the
generating function for any class of graphs is known, then the generatin g
function for the corresponding connected graphs is obtained by taking the
formal logarithm of the first series . The recurrence relation (1 .4.5) for U p
is a consequence of (1 .4.4) and (1 .2.8) .

	

/ /
For the first few terms of U(x), we have

x3

	

4 38x 5
U(x)=x+ 3i + 4i .+	 +

	

(1 .4.6)

and
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8

	

1 2
Figure 1 .4 . 1

The four eulerian graphs of order 5 .

10 12 0

The four eulerian graphs of order 5 are shown in Figure 1 .4.1 together
with the orders of their respective groups . According to (1 .1 .3) the reciprocal s
of these numbers should sum to 38/5!, which is the coefficient of x 5 in U(x) ,
and indeed they do.

Next we consider the more difficult problem of determining the number o f
labeled eulerian graphs with a given number of points and lines. We seek to
establish the following result of Read [R5] .

Theorem The polynomial wp(x), which has as the coefficient of x 4 the
number of labeled graphs of even degree with p points and q lines, is given by

1

	

p P p 1— x n (P — n )
wp(x) = 2p (1 + x)(2) E n 1 + xn= 0

For small p, we find that

w 1 (x) = w2(x) = 1,

	

w 3(x) = 1 + x 3 ,

	

and

Proof Let L be the set of all labeled graphs of order p with exactly q lines .
Consider any graph G in L and arbitrarily multiply each of the labels 1
through p by + 1 or — 1 . Since the labels will be positive or negative, each
point can be referred to as "positive" or "negative" depending on the sig n
of its label. The numbers + 1 or — 1 are then assigned to each line as th e
product of the signs of its points . The sign of G, denoted a(G), is then define d
as the product of the signs of its lines . There are, of course, 2 P ways in which th e
signs can be assigned to the labels of a given graph . On the other hand, sup-
pose they have been allocated to the p integers which serve as labels ; then
there are (I4)) different graphs with q lines and signed points determined b y
the given allocation of signs to the labels . These concepts are illustrated in
Figure 1.4.2 .

Since a(G) is the sign of the product of positive or negative numbers
assigned to adjacent points, the positive points can be eliminated from this
product. Thus

(1 .4.7)

w4(x) = 1 + 4x 3 + 3x4 .

a(G) = (—1)° ,

	

(1 .4.8)
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+1 -3

:

	

+ 1

0
+2

	

-1

0

0	 0
-4

	

+ 2

- 4
0

Figure 1 .4 . 2

Two graphs with the same sign .

where a is the sum of the degrees of the negative points . On the other hand ,
obviously

a(G) = (—1)b,

	

(1 .4 .9)

where b is the number of negative lines of G, joining a negative point to a
positive point .

Next we consider the sum E6(G) where the summation is for all labele d
graphs in L and for the set S of 2" possible allocations of + 1 or -1 to the
labels of the points . It follows from (1 .4.8) and (1 .4.9) that this sum can b e
written in two different ways :

E IE (—1)°~ = E E (—1) .

	

(1 .4.10)
GEL l S

	

S GEL

We first consider the left side of (1 .4.10) . If G is even, then a is even ,
whatever the allocations of signs in S. Hence E(— 1)° = 2" and G contribute s
2" to the left side of (1 .4.11). If G is not even, at least one point v has odd degree .
The allocations in S for which the label of v is positive and those for whic h
it is negative are equinumerous and contribute opposite amounts to E( -1)° .
Hence G contributes nothing to the left side of (1 .4.10) . Thus the left side of
(1 .4.10) is 2" times the number of even graphs in L.

Next we focus on the right side of (1 .4.10) and consider an allocation in S
for which n points are positive and m = p — n are negative. There are
(R) such allocations. If there are k lines that join positive to negative points ,
these may occur in (k) different ways. The remaining q — k lines can occur i n

(z) + (m)

q— k

different ways. Summing from k = 0 to q, we obtain

9

	

nm n(n — 1)/2 + m(m — 1)/2
E (—1)k

k=O

	

k

	

q—k

(1 .4 .11 )

(1 .4.12)
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as the contribution to the right side of (1 .4.10) for each allocation with given n
and m. This contribution is the coefficient of x9 in

(1 — x)nm(1 + x)n(n- 1)/2+m(m—1)/2 . (1 .4.13)

Hence the right side of (1 .4.10) is the coefficient of x 4 in

i P — x)nm( 1 + x)n(n — 1)/2 + m(m — 1)/ 2
n=0

	

t

and this coefficient is 2p times the number of even graphs in L . On observing
that

(1 .4.14)

n +

m

21

	

\

	

p

2

	

2
— n(p — n),

	

(1 .4.15)

we obtain the final result that the required number of even graphs is the
coefficient of x 4 in the right side of (1 .4.7) .

	

//

We note in passing that the total number of labeled, even graphs is th e
number wp(1) obtained from (1 .4.7) by setting x = 1 and observing the con-
vention that y° = 1 even when y = 0 :

wp( 1 ) = 2(° Z 1) ,

	

(1 .4.16)

which verifies (1 .4.1) .

One can use (1 .4.7) to obtain

w5(x) = 1 + 10x 3 + 15x4 + 12x 5 + 15x6 + 10x' + x10, (1 .4.17)

and the 64 labeled, even graphs counted by w 5 (x) can be obtained by labelin g
the seven even graphs displayed in Figure 1 .4.3 .

The exponential generating function w(x, y) that enumerates all labeled ,
even graphs is

w(x, y) = E w(x)y"/p! .

	

(1 .4.18)
p= 1

0 O

O

	

O 0

	

0 0

	

120

	

12 810 12 120

Figure 1 .4 .3

The even graphs of order 5 and their symmetry numbers .
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To obtain the generating function u(x, y) for labeled, eulerian graph s
with a given number of points and lines, we need only take the logarithm
of the series 1 + w(x, y) :

u(x, y) = log(1 + w(x, y)) .

	

(1 .4.19)

This observation follows from the two-variable version of the Labeled
Counting Lemma .

1 .5 THE NUMBER OF k-COLORED GRAPH S

A colored graph consists of a graph G with point set V, together with an
equivalence relation on V such that no equivalent pair of points are adjacent .
The k equivalence classes are regarded as the colors and G is called k-colored .
Two k-colored graphs are isomorphic if there is a 1—1 correspondence betwee n
their point sets which preserves not only adjacency but also the colors .
Note that the colors do not have fixed identities but are interchangeable .
A given graph may be k-colored in many ways. For example, all the 3-
colorings of a labeled graph of order 6 are shown in Figure 1 .5.1 where th e
letters a, b, and c denote the colors and the integers denote the labels .

Following Read [R2], we shall find a formula for the number of labele d
k-colored graphs of order p, generalizing a result of Gilbert [G2] . Let p i , . . . ,
Pk be positive integers that form an ordered partition of p, so tha t

k

E Pi = P .
i= 1

Writing {p} for an arbitrary solution of (1 .5.1), Read's formula takes th e
following form :

Theorem The number Cp(k) of k-colored labeled graphs of order p i s

C p(k) _ 1

	

P

	

2(1, 2 - £ p
U2 .l 1

ki. {P) P1, . . .,Pk

(1 .5 .2)

a

	

C a

	

C

a

a

	

C a

	

C

Figure 1 .5 . 1
Allfour 3-colorings of a graph .
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Proof Note that the number of k-colored, labeled graphs of order p in
which the colors have fixed identities is k ! CP(k) . Hence we now consider the
k colors as fixed. Each solution {p} of (1 .5.1) determines a k-part ordered
partition of p, and so we seek the number of labeled graphs with p ; points
of the ith color . The number of ways that the labels can be selected for the
points is the multinomial coefficien t

P1 ' P2, • • •'Pk) .

Obviously, there are

P

(1 .5.3)

pairs of points of different colors . Since each of these pairs may or may not b e
adjacent, we raise 2 to the power of (1 .5.3), and use (1 .5.1) to obtain for th e
total number of graphs with p, points of color i, precisely the expression
under the summation sign in (1 .5.2). On summing over all solutions {p }
of (1 .5.1), we have k ! CP(k) and (1 .5.2) is verified .

	

//

Note that the coefficient of x q in

1 (

	

P

	

(1 + x)(P2 - E P )J 2

is the number of k-colored, labeled (p, q) graphs. For example, if we apply
this assertion with p = 4, q = 5, and k = 3, we obtain six as the number o f
3-colored labeled (4, 5) graphs . This number six is also easily verified becaus e
there is only one unlabeled (4, 5) graph and it can be labeled in six ways a s
in Figure 1 .1 .3 .

A recursive formula for CP(k) is easily derived as a corollary :
1P -1 p

CP(k) =
k

n

	

nE

	

2n(P-n)Cn(k — 1) .

	

(1 .5.4)

The verification of (1 .5.4) can be accomplished by expressing the ordinar y
generating function for CP(k) in terms of that for CP(k — 1). The values of
k ! C P(k) for p < 7 are in Read [R2] and were used to derive Table 1 .5.1 .

Note that (1 .2.8) cannot be usedt to express the generating function fo r
connected k-colored graphs in terms of that for k-colored graphs .

t Read wrote Wright that both Read [R2] and Wright [W3] were wrong . So Read and Wrigh t
wrote a joint erratum [RW1] to set things right . This may be wrong since Wright asserts tha t
Wright wrote Read first .

i
{P) P1, . . .,Pk
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TABLE 1 .5 . 1

p/k

	

1

	

2

	

3

	

4

	

5

	

6

	

7

1

	

1

	

0

	

0

	

0

	

0

	

0

	

0
2

	

1

	

2

	

0

	

0

	

0

	

0

	

0

3

	

1

	

12

	

8

	

0

	

0

	

0

	

0
4

	

1

	

80

	

192

	

64

	

0

	

0

	

0
5

	

1

	

720

	

5 120

	

5 120

	

1 024

	

0

	

0
6

	

1

	

9152

	

192 000

	

450 560

	

24 576

	

32 768

	

0
7

	

1 165 312 10 938 368 56 197 120 64 225 280 22 020 096 2 097 15 2

1 .6 ACYCLIC DIGRAPH S

A walk of length n in a digraph D is determined by its sequence of point s
vo, v 1 , . . . , v„ in which v i is adjacent to vi+ 1 for i < n. A closed walk has the
same first and last points . A cycle is a nontrivial closed walk with all points
distinct except the first and last . An acyclic digraph has no cycles . Labeled
acyclic digraphs are now enumerated rather easily following Robinso n
[R20], but the unlabeled case requires more powerful machinery that i s
developed in Chapter 8.

A digraph E is an extension of D if D is the subgraph of E induced by the
points of E with positive indegree . Every acyclic digraph must have at leas t
one point of indegree zero [HNC1, p . 64] . Therefore every acyclic digraph
with at least one arc is the extension of a unique proper subgraph . Further-
more, every acyclic digraph has many extensions, but each must be acyclic .

Suppose D is an acyclic digraph with exactly n 1 points u i of indegree
zero and s other points vi . We can form an extension E of D having exactl y
k points of indegree zero by adding k new points wi and new arcs such that
each of the n points u i is adjacent from some new point w i , but otherwise the
transmitters w i may be adjacent to any of the other points vi of D. In Figure
1 .6.1, the new points w 1 , w2 , and w3 were added and each old point u l and u 2
of indegree zero is adjacent from some w i .

D

Figure 1 .6 . 1
An extension of an acyclic digraph .



1 .6 ACYCLIC DIGRAPHS

	

1 9

Thus all the acyclic digraphs of order p can be obtained by extendin g
the acyclic digraphs of order less than p . Specifically, let ap be the number of
labeled acyclic digraphs of order p and let a p,k be the number of order p
which have exactly k > 1 points of indegree zero . For k = p, we have of
course app = 1, since the totally disconnected digraph is the only candidate .
Clearly for all p,

p
ap =

	

ap,k -

	

(1 .6 .1 )
k= 1

We shall now show how ap,k can be expressed in terms of ap _ k,n with
n < p — k . First we prove that the contribution to a p,k from all extension s
of the ap _ k .n digraphs with p — k points of which exactly n have indegree
zero is

(2k — 1)n2k(p—n—k) p
al

	

k p k, n

We seek the number of labeled extensions E of the ap _ km labeled acyclic
digraphs D. For each of the (k) ways of labeling the k new points w i in E,
there are a p _ k,f labelings of the digraphs D to be extended. This account s
for the factor (k)ap _ k,n in (1 .6.2) . Each of the n points of indegree zero in D
must be adjacent from at least one of the k new points. Hence there are 2k — 1
possible combinations of arcs to each of these n points and therefore ( 2 k — 1)"
for all of them. Each new point may or may not be adjacent to any of th e
p — n — k points of positive indegree in D. Therefore there are 2P-' k
possible combinations for each new point and hence (2 P-n-k)k in all. On
multiplying these factors, (1 .6.2) is obtained .

Summing (1 .6.2) over n, we have an expression for ap,k .

Theorem The number ap,k of labeled acyclic digraphs of order p which
have exactly k points of indegree zero i s

p— k

ap,k
__ E (2k — 1)n2k(P—n—k) p a

k

	

p—k,n .
n= 1

Thus (1 .6.1) and (1 .6.3) can be used to determine ap . These results can
also be expressed in terms of generating functions . Let a(x, y) have as the
coefficient of xkyp _ k the number of labeled acyclic digraphs with p points,
k of which have indegree zero . Then the first few terms of a(x, y) are given b y

a(x,y) = x + x 2 + 2xy + x 3 + 9x2 y + 15xy2 + x4 + 28x 3y

+ 198x2y2 + 316xy 3 + x5 + 75x4y + 1610x 3y2

+ 10710x2y 3 + 16885xy4 + • • • .

	

(1 .6.4)

(1 .6 .2)

(1 .6.3)
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D,

	

Dz

Figure 1 .6 . 2

The two acyclic digraphs of order 3 with two points of indegree zero .

For example, there are six ways in which that acyclic digraph D 1 of
Figure 1 .6.2 can be labeled and three in which the other, D2 , can be labeled.
The total of nine corresponds to the term 9x 2y of a(x, y) .

1 .7 TREES

A tree is a connected graph that has no cycles, see [H1, Chap . 4]. It is
well known that every nontrivial tree has at least two endpoints (of degree 1) .
It follows that if T is a tree with p points and q lines then

q=p-1 .

	

(1 .7 .1 )
All of the trees with as many as five points are shown in Figure 1 .7 . 1

together with the number of ways in which each may be labeled . From these
data, the number tP of labeled trees with p points has its smallest values
1, 1, 3, 16, 125 . Many authors have correctly surmised from this sequenc e
that the counting formula is given by the next theorem .

Theorem (Cayley) The number tP of labeled trees of order p is

tP
= pP-2

	

(1 .7 .2)

We shall sketch only the four proofs of Cayley, Pri .ifer, Polya, and Kirch -
hoff, although there are many others no less interesting than these . A collec-

0

V e

0

0

	

0

	

6

	

0

	

0

	

0
3

	

12

	

4

	

60

	

60

	

5

0

9

0

Figure 1 .7 . 1
The trees of order up to 5, and the number of ways to label each .
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don of such proofs may be found in Moon's article [M1], as a sequel t o
which he wrote an entire book [M4] on the subject of counting various type s
of labeled trees .

Cayley [C2] suggested a correspondence between labeled trees an d
functions from a set of p — 2 objects to a set of p objects. For example ,
for p = 5 there are 5 3 functions from {a, b, c} to {v 1 , v 2 , v 3 , v4 , v 5 } . These
functions are enumerated by the polynomia l

(v 1 + v 2 + v3 + v4 + v5 )3 .

	

(1 .7.3)

Its terms correspond in a natural way to the functions . To illustrate, v4
corresponds to the constant function f(x) = v 4 , the term 3v 1 v3 indicates the
three functions that send a single element to v 1 while the other two go to v 3 ,
and 6v 2v3 v 5 gives the six functions that send one element to each of v 2 , v3

and v 5 . Now if (1 .7.3) is multiplied by v 1 v 2 v 3 v4v5 to obtain

(v 1 + v2 + v3 + v4 + v5) 3 v1v2v3v 4v 5 ,

	

(1 .7 .4)

then there is a correspondence between the terms in this product and th e
labeled trees of order 5. This correspondence is displayed in Figure 1 .7.2
using the term 3viv 2v3v4v 5 = 3v t v3(v 1 v2v3 v4v 5 ). Note that in the tree s
corresponding to viv 2 v3v4v 5 the degree of the point labeled k is the exponent
of v k . This observation can be shown to be true in general and hence th e
number of labeled trees in which the point with label k has degree dk is the
multinomial coefficient

p — 2
(1.7.5)

d1—1,d2—1, . . .,dp— 1

Cayley [C2] displayed this correspondence for p = 6 and dismissed th e
other cases with the remark that "It will be at once seen that the proof give n
for this particular case is applicable for any value whatever of p . "

Priifer [P10] obtained a correspondence between labeled trees of order p
and (p — 2)-tuples (a l , a2 , . . . , ap _ 2 ), where each a k is an integer from 1 to p
with repetitions permitted . Thus there are pp-2 such sequences. For a

02

	

04

	

0 5

4

	

5

	

2

	

5

	

2

	

4

Figure 1 .7 . 2

Labeled trees counted by viv2 v3v 4 v 5 .
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Figure 1 .7 .3
A labeled tree of order 8 .

given labeled tree T, let v be the endpoint with the smallest label and let a l

be the label of the point adjacent to v . Now to obtain a2 repeat this step with
T — v, the tree obtained from T by deleting v (and the line incident with v) .
The procedure is terminated when only two adjacent points remain . Note
that the tree in Figure 1 .7.3 corresponds to the sequence (2, 4, 1, 2, 4, 4) .

Since each labeled tree of order p yields a unique (p — 2)-tuple, tp < pp-2.
To show that tp > pp-2, we describe a procedure for constructing a

unique labeled tree from each (p — 2)-tuple, (a l ,a 2 , . . . , ap _ 2) . Following
Moon [M4, p. 5], let b l be the smallest positive integer that does not occur i n
the (p — 2)-tuple and let (c2 , . . . , c,_ 2 ) denote the (p — 3)-tuple obtaine d
from (a2 , . . . , a_ 2) by diminishing all terms larger than b 1 by 1 . Then (c 2 ,

. . , cp _ 2 ) consists of the numbers 1 through p — 1, and we can assume ther e
is a corresponding tree T of order p — 1 . Next relabel the points of T by
adding 1 to each label that is larger than b 1 — 1 . Then introduce a pth poin t
labeled b 1 and join it to the point labeled a l in T. Thus a unique labeled tree
is obtained which corresponds to the given (p — 2)-tuple .

Next we consider Polya's method [P8] for determining the number o f
labeled trees. Since the number of rooted, labeled trees of order p is ptp , the
exponential generating function for these trees is given by

co

y = E ptpxp/p! .

	

(1 .7 .6)
p =

Polya found a functional equation for y and then applied Lagrange's in-
version formula to determine tp .

This functional equation for y is now derived. It follows from the Labele d
Counting Lemma that y"/n! is the exponential generating function for n-set s
of rooted labeled trees . These n-sets correspond precisely to rooted labele d
trees in which the root has degree n but no label . More specifically, thi s
correspondence is obtained by first adding a new point with no label to eac h
n-set and by then joining this new point to each of the old roots . This idea
is illustrated in Figure 1 .7.4. Multiplication by x introduces a label for the
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7

Figure 1 .7 . 4

.4 3-set of rooted trees and the corresponding tree whose root has degree 3 .

new root and adds it to the point count . Thus xy n/n! enumerates rooted ,
labeled trees in which the root has degree n . On summing we obtai n

00

y = E xyn/n ! ,

	

(1 .7 .7 )
n= 0

and hence we arrive at the functional equatio n

y = xe'' .

	

(1 .7.8)

To solve (1 .7 .8) for y in terms of x we apply the very useful special cas e
of the formula of Lagrange given in Moon [M4, p . 26] ; see also Polya [P8] .

Lagrange's Inversion Formula If 9(y) is analytic in a neighborhood o f
v = 0 with 9(0) 0 0, then the equatio n

x = y/9(Y)-

	

(1 .7.9)

is uniquely solved by the generating functio n

y =

	

ckx k

k= 1

whose coefficients are

c k = ( 1/k!) {(d/dy)k-1((p(Y))k}v=0

(1 .7.10)

(1 .7.11 )

On applying this inversion formula to (1 .7.8) where 9(y) = e5, we find that
co

y = E
kk — 1 xk/k 1

k=1
(1 .7.12)

and confronting this with (1 .7.6), we again obtain the formula (1 .7.2) for tp .
To solve some labeled counting problems (see Exercises 1 .13a, b and

I .14) it is convenient to use Lagrange's generalization of formula (1 .7.11) .
In addition to the conditions on the function rp, we assume that f(y) is
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another function analytic in a neighborhood of y = O . Lagrange's general
formula states that f(y) can be expressed as a power series in x as follows :

ao xk d \ k - 1
f(Y) = .f(0) +

	

—

	

[.f~(Y)(Pk(Y)]

	

(1 .7.13)

	

k _ l k . dy

	

y= o

With f(y) = y, this formula implies (1 .7.10) and (1 .7.11). A proof of (1 .7.13)
can be found in Goursat and Hedrick [GH1] .

A most interesting and useful result usually called the "Matrix-Tre e
Theorem" is implicit in the work of Kirchhoff [K3] . The number of labeled
trees can be derived quickly as a corollary . The adjacency matrix A = A(G)
[a ir] of a labeled graph G of order p is the p x p matrix in which au = 1 if
v i and v i are adjacent and au = 0 otherwise. Hence there is a 1—1 corre-
spondence between labeled graphs of order p and p x p symmetric binar y
matrices with zero diagonal . Let M(G) denote the matrix obtained from — A
by replacing the ith diagonal entry by deg v i . A subgraph H of G spans G
if every point of G is a point of H (see Figure 1.7 .5 . )

Matrix-Tree Theorem for Graphs For any connected labeled graph G ,
all cofactors of the matrix M(G) are equal and their common value is th e
number of spanning trees of G .

The proof can be found in [H1, p . 152] . To illustrate, consider the graph G
in Figure 1 .7.5. It has three spanning trees since the 1, 4 cofactor, for example,
of

2 -1 -1

	

0

- 1 2 -1 0

- 1 -1 3 - 1

0

	

0 -1

	

1

M(G) =

-1

	

2 - 1

-1 -1

	

3

0

	

0 -1

= 3.is

The complete graph K p with all lines present can be labeled in only one wa y
and every spanning tree corresponds to a different labeled tree . Hence the

V,

	

V4

1	 I 1 .1 ~fl
Figure 1 .7 .5

A graph and its three spanning trees .

VZ

	

V3
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number of labeled trees of order p is formed by applying the theorem to K .
Each principal cofactor of M(K P) is the determinant of order p — 1 :

P 1 1 1

-1 p—1 •• - 1

-1 -1 • . . p—1

On subtracting the first row from each of the others and adding the las t
p — 2 columns to the first, we arrive at an upper triangular matrix whose
determinant is pP- 2 .

1 .8 EULERIAN TRAILS IN DIGRAPHS

We saw in Section 1 .7 that the Matrix-Tree Theorem for Graphs provide s
one of several methods for counting labeled trees, by determining the numbe r
of spanning subtrees of a labeled K P . We now develop only the statemen t
of the extension of this theorem to digraphs, which gives the number o f
spanning subtrees of a given digraph D that are oriented toward each point .
The object of this section is to apply this Matrix-Tree Theorem for Digraph s
to a labeled eulerian digraph D in order to derive an explicit formula for th e
number of eulerian trails in D.

A tree to a point is obtained from a rooted tree T with root v by orienting
all the arcs toward v . A tree from a point is the directional dual . Clearly these
are both in 1—1 correspondence with rooted trees .

Consider the digraph D of Figure 1 .8 .1 whose points are labeled 1, 2, 3,
4, 5. There are just four spanning trees from point 1 and two spanning tree s
to point 1, as shown in Figure 1 .8.lb and c .

Let D be a digraph with adjacency matrix A. Define the diagonal matri x
Mon , with i, i entry od v;, the outdegree of v- . Then let C on , = Mon , — A .
Thus every row sum in Con , is zero, but not necessarily every column sum. I n
fact the column sums of Con , are also all zero if and only if D is eulerian, as we
shall soon see . Similarly define C;n = M;,, — A . The important next resul t
was found by Bott and Mayberry [BM2] and the proof is due to Tutte [T2] .

(1 .8.1) Matrix-Tree Theorem for Digraphs All the cofactors of the
ith row of C on , are equal, and their common value is the number of spannin g
trees of D to v i . Dually, the common value of the cofactors of the ith colum n
of C; n is the number of spanning trees from vi .
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4

4 2 xi/	 \//	 /
(a)

	

(b )

(c )

Figure 1 .8. 1
The spanning trees of D from and to the point labeled 1 .

Although we omit the proof, this theorem is easily illustrated for th e
digraph D of Figure 1 .8.1, for which the two matrices of the theorem are

2 -1 0 0 - 1

0 2 -1 -1 0

Ca„ t = 0 0 1 -1 0

0 -1 0 2 - 1

-1 0 0 0 1

1 -1 0 0 - 1

0 2 -1 -1 0

C;n = 0 0 1 -1 0

0 -1 0 0 - 1

-1 0 0 0 2

From these it is verified at once from the first row of C o„ , and from the first
column of C;,, that D has exactly four trees from point 1 and two trees to it ,
as shown in Figure 1 .8.1 .

A digraph is called eulerian if there exists a closed spanning directe d
walk passing through each arc exactly once . Such a walk is a directed eulerian
trail . One criterion for a digraph to be eulerian [H1, p . 204] is that it be con-
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6

5

	

1

D :

4 C;C 1.) 2

3

Figure 1 .8 .2
An eulerian digraph .

nected while each point has equal outdegree and indegree . For example ,
the digraph of Figure 1 .8.1 is not eulerian, but Din Figure 1 .8 .2 is .

It follows from the definition of an eulerian digraph that Co„ t and C hi

have the same diagonal, and are therefore equal . For the digraph D o f
Figure 1 .8 .2, this matrix is

2 -1

	

0

	

0 -1

	

0

0

	

2 -1 -1

	

0

	

0

0

	

0

	

1 -1

	

0

	

0
C — C o ., = C in

	

0 -1

	

0

	

2 -1

	

0

- 1 0 0 0. 2 - 1

- 1 0 0 0 0 1

A first step in the proof of the Matrix-Tree Theorem for Graphs is the observa -
tion that in a matrix with all row sums and column sums zero, every cofacto r
has the same value. Therefore, by Theorem 1 .8.1, every eulerian digrap h
has the same number of spanning trees to each point and from each point .
For example, in the matrix above all cofactors equal 4, so there are fou r
trees to each point as illustrated in Figure 1 .8 .3 .

o	 \v, //\0 v,

	 o \1	 o

(d )(c )
Figure 1 .8 .3

The spanning trees to v l in Figure 1 .8 .2 .
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We are now ready to apply the Matrix-Tree Theorem for Digraphs t o
the derivation of the number of eulerian trails in a given digraph . The proof
follows the elegant exposition in Kasteleyn [K1] . The result itself was firs t
found by van Aardenne—Ehrenfest and de Bruijn [BE1], although a specia l
case appears earlier in Smith and Tutte [ST1] . Because each point v i of an
eulerian digraph D has od v i = id vi , we can denote this number by di .

Theorem The number e(D) of eulerian trails in a labeled eulerian digraph D
in which c is the common value of the cofactors of C = Co „ t = C in is

e(D) = c JJ (d i — 1)! .

	

(1 .8 .2)

Proof Let v l be any point of an eulerian digraph D . We shall show that each
eulerian trail E of D determines a unique spanning tree T to v 1 , and that each
such tree T determines exactly fJ(di — 1)! eulerian trails. Since we have
already seen that the number of spanning trees of D to each point is c,
equation (1 .8.2) will then be proved.

To construct the spanning tree to v l determined by a given eulerian trai l
E in a digraph D, call the exit arc from each point v i ~ v l the last arc out of v i
when traversing E with starting (and finishing) point v 1 . Thus only vl has
no exit arc. Then define T as the spanning subgraph of D whose arcs are
the exist arcs. Since in T, v l has outdegree 0 and all other points have out -
degree 1, it must be a tree to v l by [HNC1, p. 283, Theorem 10.12] .

Now let T be a fixed spanning tree to v l (among the c such trees) . We
proceed to construct all eulerian trails E associated with T in the manner o f
the preceding paragraph, that is, the exit arcs of E with respect to v 1 are
the arcs of T. Since D is eulerian, we have already noted that od v i = id vi =
di . In constructing E from T, one arc from each point v i ~ vl is put aside
for later use as the exit arc, and one arc from v 1 is reserved for use as the firs t
arc of E. Then at each and every point v i (including v 1), there are exactly
(d i — 1)! orders in which the occurrences of arcs in E can appear . Since thes e
occurrences are independent, we multiply these factorials to get the numbe r
of eulerian trails determined by T But there are c such trees, proving (1 .8 .2) .

//

(1 .8.3) Corollary In an eulerian digraph, in which each di = 1 or 2,
the number of eulerian trails equals the number c of spanning trees to eac h
point .

This follows at once from the observation that every (d i — 1)! = 1 .
We illustrate the corollary for D in Figure 1 .8 .2, in which each di is 1 or 2.
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\/'
(a)

	

(b)

	

(c)

	

(d )

Figure 1 .8 .4

The eulerian trails of Figure 1 .8 .2 .

Thus we know from the calculation of the cofactor preceding Figure 1 .8.3
that D has exactly four eulerian trails . These are now displayed (Figure 1 .8 .4)
in correspondence with the spanning trees of exit lines shown in the precedin g
figure .

EXERCISES j'

1 .1 Connected labeled digraphs .

1 .2 Labeled orientations of a given (p, q) graph with symmetry number s .
13 Oriented labeled graphs and signed labeled graphs in which each lin e
is positive or negative .

1 .4 Labeled (p, q) graphs with no isolated points .

	

(Gilbert [G2])
1.5 (a) Labeled, connected, (p, q) graphs :

(_1)k+t

	

p! m

k= 1

	

k

	

ip) flp i ! k

where m = ~k= 1 (n;) and the second sum is over all partitions p 1 +
+ pk = p of p with k parts .

(b) Labeled (p, q) blocks .

	

(Riddell [R14] )

1 .6 A labeled graph with point set {v0 , v 1 , . . . , v_ I I is a starred polygo n
if vo adj vi implies that for all k = 1 to p — 1, Vk adj Vk+i, where the subscripts
are taken mod p. There are 2(p-1)12 starred polygons of order p. (Turner [Ti] )

t Whenever a class of graphs is mentioned in an exercise, it is understood that the reader
is being asked to find a counting formula for them .
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1.7 Labeled, even, general graphs (see Section 7 .5) .

	

(Read [R5] )

1.8 Connected graphs with all points labeled except endpoints .
(Moon [M3])

1.9 Labeled trees in which each point has degree (a) 1 or 3, (b) degree 1
or n, where n > 3 .

1.10 Labeled bicolored trees with m points of one color and n of the other :

n' 1 m" -1

	

(Scoins [Si] )

1.11 Labeled homeomorphically irreducible trees :
- 2)!

E
(- 1)P

-k P 0 - 2

k=2

	

k (k — 2)! "

1 .12 Labeled trees with unlabeled endpoints . (Hint : Use Stirling numbers
of the second kind .)

	

(Harary, Mowshowitz, Riordan [HMR1] )

1.13 (a)

	

Labeled 2-trees (see Section 3 .5) :

( P)(2p — 3)P- 4 .
2

(Beineke and Moon [BM 1] )

(b)

(c)

Labeled k-trees :

Line-labeled 2-trees :

(kp — k2 + 1)p-+- 2
k

(Beineke and Pippert [BP1])

(2p — 3)! (2p
— 3)P-4.

	

(Palmer [P1] )
2(p — 2) !

1 .14 A plane graph has been embedded in the plane so that no two lines
intersect. Labeled, plane 2-trees :

p(p — 1)2 (5p — 10)!•
(4p 6)

. (Palmer and Read [PR O
—

1 .15 (a) Labeled, connected functional digraphs (see Section 3 .4) :

(Read [R9] )

P

	

p !
k=1 (P — k)! P (Rubin and Sitgreaves)p-k+ 1

(b) Labeled, connected unicyclic graphs .

	

(Moon [M4] )
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1 .16 Labeled graphs with (a) no endpoints, (b) with a given number o f
endpoints . (Read [R9] )

1 .17 Labeled cacti (see Section 3 .4) with c 2 lines in no cycle, c 3 triangles,
(•4 quadrilaterals, . . . , c" cycles of n points :

	 p!p`	
jj~~
j if=2 ((k - 1)!)c kck !

where c = Ef= 2 Ck — 2 .

	

(Harary and Uhlenbeck [HU 1] )
1 .18 (a) The number c3 of triangles in a labeled graph is 6 of the trace
of the cube of its adjacency matrix A ; the number c 4 of quadrilaterals and
the number c 5 of pentagons is also expressible in terms of A .

(Harary and Manvel [HMI] )
(b) The number of paths of three, four, and five points can be expressed i n
terms of A. (Cartwright and Gleason [CGl], and Harary and Ross [HR1] )

1.19 The number of ways of arranging 2" binary digits in a circular arra y
so that the 2" sequences of n consecutive digits in the arrangement are al l
distinct :

22n-

1 -" .

(Hint : Apply Theorem (1 .8 .2) to the eulerian digraphs (using the ter m
loosely because loops are present) which is obtained from the universa l
relation S x S on a 2-set S = {0, 11, by taking iterated line digraphs (defined
in Section 10.3) .)

	

(deBruijn [B4])



Solving problems is a practical art, like swimming or

skiing, or playing the piano: you can learn it only by

imitation and practice . This book cannot offer you a
magic key that opens all the doors and solves all th e

problems, but it offers you good examples for imitatio n
and many opportunities for practice: ifyou wish to

learn swimming you have to go into the water, and if

you wish to become a problem solver you have to solve

problems .

George Polya, Mathematical Discovery

Chapter 2 POLYA'S THEOREM

In order to determine the number of unlabeled graphs, the problem i s
reformulated so that the answer can be obtained by finding the number o f
orbits of the appropriate permutation group . Burnside's Lemma can then be
used to express the number of orbits in terms of the number of object s
fixed by permutations in the group at hand . Every permutation group has
associated with it a polynomial called the "cycle index ." This concept can
be traced back to Frobenius as a special case of a formulation in terms o f
group characters . Rudvalis and Snapper [RS2] point out the connectio n
between these generalized characters and the theorems of deBruijn [B5 ]
and Foulkes [F1] . Redfield [R10], who discovered cycle indexes indepen-
dently, devised a clever scheme (Chapter 7) which enabled him to determine
the number of classes of certain matrices by forming a special product o f
cycle indexes. Burnside's Lemma was concealed in the proof of his enumera-
tion theorem. Redfield's methods enabled him to count numerous interestin g
combinatorial structures, provided that the counting problem under con-
sideration could be recast in the matrix form required by his theorem and

32
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provided that formulas could be derived for the relevant cycle indexes .
Though admirably suited for solving certain problems, this method i s
somewhat difficult to apply to others because the structures to be enumerated
must be interpreted as matrices . The classical enumeration theorem of Polya ,
on the other hand, may be viewed as an enumerator of functions and for thi s
reason is much easier to apply to most graphical problems . In its sweeping
generality, Polya's theorem incorporates Burnside's Lemma, and ofte n
enables one to express the complete generating function for a class of graph s
in terms of an appropriate cycle index and a polynomial called the "figur e
counting series ." Thus it is the generality, versatility, and ease with which i t
can be applied that make Polya's method a most powerful tool in enumerative
analysis.

2.1 GROUPS AND GRAPHS

The study of permutation groups evidently goes hand-in-hand with the
study of graphs because a graph provides a "picture" of its automorphis m
group. Thus the group theoretic concepts required in this chapter are mor e
easily understood in their graph-theoretic setting .

Consider a set X = {1, 2, . . . , n} and let A be a collection of permutation s
of X which is closed under multiplication . Then A is a permutation group
with object set X . The order of A, denoted IAI, is the number of permutations
in A and the degree of A is the number n of elements in the object set X.
For example, consider the graph G of Figure 2 .1 .1, always chosen at random ,
whose four points consist of the set X of integers 1, 2, 3, 4. Note that the
list of permutations a i in the figure consists of all permutations of X whic h
preserve adjacency in G . For example, points 1 and 4 are adjacent in G.
The permutation (13)(2)(4) sends the points 1 and 4 to 3 and 4, and thes e
images, 3 and 4, are also adjacent . Thus (13)(2)(4) preserves the adjacency
of the points 1 and 4. Since the collection of permutations in this list i s
closed under multiplication, it constitutes a group . As already noticed, the

a, _ (1)(2)(3)(4 )
a 2 = (1)(3)(24 )

a 3 = (13)(2)(4)

a 4 = (13)(24 )

2

3

G :

4

Figure 2.1 . 1

A graph and its group.
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G :

Figure 2.1 . 2

The complement of the random graph .

collection F(G) of all adjacency preserving permutations of V(G) is called
the group of G or the automorphism group of G, and its permutations are
called automorphisms. Thus the group of a graph is a permutation grou p
whose objects are its points .

The complement G of a graph G has the same set of points as G, and tw o
points u and v are adjacent in G if and only if they are not adjacent in G.
The complement of the four point graph in Figure 2 .1.1 is shown in Figure
2.1 .2. The permutations which preserve adjacency in the graph of Figure
2.1 .2 are the same as those for Figure 2 .1 .1 . In fact, for any graph G, the
permutations which preserve adjacency, also preserve nonadjacency an d
hence

F(G) = F(G).

	

(2 .1 .1 )

But now we require a more subtle criterion than group isomorphis m
for deciding whether or not two permutation groups are the same. Consider
the three labeled graphs of Figure 2.1 .3, which have essentially the same
groups. The only distinctions between the graphs lie in complementatio n
and labeling. It is convenient, therefore, to identify permutation group s
whose permutations are the same except for the names of the objects bein g
permuted. Therefore we make the following definitions . Two permutation
groups A, B with object sets X and Y respectively are isomorphic, written
A B, if there is a function h from A onto B such that for all a l , a2 in A

h(a i a2) = h(a l )h(a2),

	

(2 .1 .2)

If there is also a 1—1 map 'p from X onto Y such that for each a in A and
each x in X

9(ax) = h(a)cp(x),

	

(2 .1 .3)

10-

	

2

	

0

	

ob

	

u,

	

9 U2

4	 03 do

	

e u,~ua

Figure 2 .1 .3

Three graphs with identical groups .
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then A and B are identical and we write A = B . Thus, the map (p simply
changes the labels, or names, of the objects of A to those of B . It is now easil y
seen that the groups of all three graphs in Figure 2 .1 .3 are identical .

2.2 THE CYCLE INDEX OF A PERMUTATION GROUP

Let A be a permutation group with object set X = {1, 2, . . ., n} . It is
well known that each permutation a in A can be written uniquely as a product
of disjoint cycles and so for each integer k from 1 to n we letjk(a) be the number
of cycles of length k in the disjoint cycle decomposition of a. Then the
cycle index of A. denoted Z(A), (Z for the word Zyklenzeiger used by Polya
[P8]) is the polynomial in the variables s l , s2 , . . . , s n defined by

n
Z(A) =

IAI -
1

	

ft
Skkca>

	

(2.2.1)
.

aeAk= 1

When it is necessary to display the variables, we shall write Z(A ; s l ,

s2 , . . . , sn) instead of Z(A) . Redfield [RIO] called this polynomial a "group -
reduction function" and P61ya [P8], who discovered the concept indepen-
dently, named it the "cycle index."

To provide an example, we consider the symmetric group S n on n objects .
For n = 3, we observe that the identity permutation (1)(2)(3) has thre e
cycles of length 1, resulting in the term si . The three permutations (1)(23) ,
(2)(13), and (3)(12) each have one cycle of length 1 and one of length 2, and
so one term is obtained, 3s, s2 . Finally, the two permutations (123) and (132 )
contribute 2s 3 . Thus we have

Z(S3 ) = (1/3!)(4 + 3s 1 s2 + 2s3 ) .

	

(2.2.2)

Throughout the rest of this book we shall make very frequent use of th e
explicit formulas which follow for the cycle indexes of the five most famou s
permutation groups : symmetric, alternating, cyclic, dihedral, and identity .
Both Redfield [RIO] and Polya [P8] expressed Z(S,,) in terms of the partition s
of n . Note that each permutation a of n objects can be associated with th e
partition of n which has, for each k from 1 to n, exactly jk(a) parts equal to k.
We shall denote a partition of n by the vector (j) = (j1, j2 , . . . , jn) where jk
is the number of parts equal to k . Thus

n
n =

	

kj k .
k= 1

(2.2.3)

Let h(j) be the number of permutations in S,, whose cycle decompositio n
determines the partition (j), so that for each k, Jk = jk(a) . Then it is easy to
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see that

h(j ) = n !/JJkjkjk ! .

	

(2.2.4)

Thus the cycle index Z(S,,) takes the form shown in the next theorem .

Theorem The cycle index of the symmetric group is given b y
n

Z (Sn) = (1/n!) E h(j) fi skk ,

	

(2.2.5)
(j)

	

k = 1

where the sum is over all partitions (j) of n, and h(j) is given by (2.2.4) .

The following corollary gives the cycle index of the alternating group An
which consists of all the even permutations in Sn .

Corollary The cycle index of the alternating group is given by

Z(A,,) = Z(Sn ) + Z(S n ; s 1 , -S2 , S 3 , —S4 , . . .) .

	

(2.2.6)

To illustrate, note that from (2 .2.2) we have

Z(S3 i s1 , - s2 , s3 ) = (1/3!)(si — 3s1 s2 + 2s 3 ),

	

(2 .2.7)

and on adding (2.2.2) and (2.2.7) we obtain

	

Z (A3) = 3(si + 2s 3).

	

(2 .2.8)

It is often convenient to express Z(S n) in terms of Z(Sk) with k < n.
For this purpose we define Z(So) = 1, and the recursive formula, whos e
inductive proof is straightforward, can then be stated as follows .

Theorem The cycle index of the symmetric group satisfies the recurrenc e
relation

n

Z(S,,) = n - l E SkZ(Sn–k)-

	

(2.2 .9)
k= 1

The cyclic group of degree n, denoted C n , is generated by the cycl e
(123 . • • n) . Redfield provided the following formula for Z(C,,) using the Eule r
9-function .

Theorem The cycle index of the cyclic group C n is given b y

Z(Cn) = n-1

	

co(k)sk"k .

	

(2.2.10)
kin
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The dihedral group of degree n, denoted D„, is generated by the cycle
(123 • .n) and the reflection (1 n)(2 n— 1)(3 n—2) . • • . Its cycle index can
be expressed in terms of Z(C„) .

Corollary The cycle index of the dihedral group D„ is given by
11
ists(2-t)/2

	

n odd
Z(D ,,) = 2Z(Cn)

	

1(s
2 n/2 + st ( '~- 2)/ 22s

	

)

	

n even .

To illustrate, one may use (2 .2.10) and (2 .2.11) to obtain Z( C 3 ) and Z(D 3 ),
but note that C 3 = A 3 and D3 = S 3 . Therefore Z(C 3) and Z(D3 ) are also
given by (2.2.8) and (2.2.2) respectively . Our group notation is completed b y
letting E„ denote the identity group on n objects, so tha t

Z(E„) = s ' .

	

(2.2.12)

We observe next that the cycle index does not determine a unique permu-
tation group. That is, two permutation groups A and B need not be identical
to share the same cycle index . In fact, they may even be nonisomorphi c
and yet have the same cycle index and as the following rather accurat e
translation from Polya [P8, p . 176] demonstrates :

It is of interest to remark that two combinatorially equivalent permutation groups
(having the same cycle index) need not be identical . In fact they need not even be isomorphic .
Namely, let p be an odd prime and m 3 be an integer (p = in = 3 is the simplest example) .
It is well known (see Burnside [B7, p. 143]) that there is a nonabelian group of order p /° in
which every element except the identity has order p . Let B be the regular representation o f
this group as a permutation group . Let A be the regular representation of the abelian group
of order p'" and type (p, p, . . . , p) . Then A and B are permutation groups of order and degre e
p'" = d with the same cyclic index

d -

	

+ (d — 1)s
P

r ")

for each permutation of A and B other than the identity contains pm ' cycles of length p .

This section is concluded with a binary operation on permutation groups
together with the relevant cycle index formula. Let A and B be groups with
disjoint object sets X and Y respectively. The product of A and B, denoted
AB, is a permutation group with object set X v Y. Each pair of permutations ,
a in A and /3 in B, determines a permutation, denoted a/3, in AB such that for
each z in X u Y,

az,

	

z E X
a/3(z)

	

/3z,

	

z E Y.

	

(2.2.13)

t We formerly [H1] called this product the "sum" and denoted it by A + B .

(2.2.11)
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Thus AB has degree IXI + YI and order IA BI . We denote the produc t
AA • • A of m copies of the group by A m. Polya [P8] observed the elementary
but useful fact that the cycle index of a product is the product of the cycl e
indexes of the constituent groups .

Theorem The cycle index of the product AB is given by

Z(AB) = Z(A)Z(B).

	

(2.2 .14)

Of course the complete graph K„ on n points has S„ as its group . Further-
more the graph G whose only connected components are K„ and Km ,
with m n, has group F(G) = S„Sm . Hence from (2 .2.14), Z(F(G)) =
Z(S„)Z(Sm) . Since it will be necessary to refer to the cycle index of the grou p
of a graph, we often simplify the notation by writing Z(G) instead of Z(F(G)) .
For example, Z(K,,) is given by (2.2.4) and (2 .2.5) .

2.3 BURNSIDE'S LEMMA

The three lemmas discussed next form the basis for numerous solution s
to counting problems for unlabeled graphs . Though apparently known to
Frobenius, Schur, and others we refer to them as the lemmas of Burnside [B7] .
Let A be a permutation group with object set X = {1 , 2, . . . , n} . Then
x and y in X are called A-equivalent or similar if there is a permutation a
in A such that ax = y . It is a classical and immediate result that this i s
an equivalence relation and the equivalence classes are called the orbits or
transitivity systems of A .

For each x in X, let

A(x) = {a E Alax = x}.

	

(2 .3 .1 )

Thus A(x) is called the stabilizer of x. Note that whenever x and y belong
to the same orbit, A(x) and A(y) are conjugate subgroups of A, and hence
IA(x)I = A(y)l . We now show that for any element y of an orbit Y of A,

IAI = I A(y)I I Y I,

	

(2 .3 .2)

that is, the number of elements in the orbit of y is the index of the stabilize r
of y in A . To see this, we first express A as a union of right cosets modulo A(y) :

m

A =

	

a .A (y) •
i=
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It only remains to observe the natural 1—1 correspondence between thes e
cosets and the elements of Y. For each i = 1 to in, we associate the coset
xi 4(y) with the element a i(y) in Y For i j, we have ai(y) 0 a;(y), because
otherwise aJ 1; is an element of A(y) and hence a i is an element of a1A(y),
thus contradicting the fact that aiA(y) n a iA(y) = 0. Therefore this cor-
respondence is 1-1. For any object y' in Y we have a(y) = y' for some permu-
tation a in A. From the coset decomposition of A, it follows that a = a i y
with y in A(y). Hence y' = a i(y) and thus every element of Y corresponds to
some coset. Therefore m is the number of elements in Y and (2 .3.2) is proved.

Now we are prepared for the first lemma which provides a formula fo r
the number N(A) of orbits of A in terms of the average number of fixed point s
of the permutations in A.

Burnside's Lemma The number N(A) of orbits of A is given by

	

N(A) = IA' E jl(a) .

	

(2 .3.3)
aeA

Proof Let X I , X2 , . . . , X„, be the orbits of A and for each i = 1 to m,
let x i be an element of the ith orbit, Xi . Then from (2 .3.2) we have

m

	

N(A) l A I = E I A(xi) I IXil

	

•

	

(2 .3.4)
i= 1

We have seen that if x and xi are in the same orbit, then IA(x)l = IA (x i)l .
Hence the right side of (2 .3.4) can be altered to obtai n

	

N(A) IAI = E IA(x)l,

	

(2 .3.5)

xEX

or in other notation

	

N(A) I AI = E E 1 .

	

(2 .3 .6 )
xeX aeA(x)

Now on interchanging the order of summation on the right side of (2 .3.6)
and modifying the summation indices accordingly, we hav e

	

N(A) l AI = E E 1,

	

(2 .3.7)
aeA x=a x

but Ex= ax 1 is just j l (a). Thus the proof is completed on division by IAI .

	

//

To illustrate, consider the graph G in Figure 2 .3.1 . Using the produc t
notation, the group of G may be expressed as F(G) = SiS2 . Now F(G) has
order 4 and each permutation fixes the three points 3, 5 and 7. Let the
permutations be denoted by

al = (1)(2)(3)(4)(5)(7)

	

a3 = (46)(1)(2)(3)(5)(7 )

a2 = (12)(3)(4)(5)(6)(7)

	

a4 = (12)(46)(3)(5)(7) .

	

(2 .3 .8)
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0 7

Figure 2.3. 1
A graph with three fixed points.

Then J (a l) = 7, j 1(a2) = j l(a3) = 5 and j1(a4) = 3 . Thus N(I'(G)) = -41{7 +
5 + 5 + 3) = 5 . It is clear of course that the orbits are {3}, {5}, {7}, {1, 2}, and
{4, 6}. Note that the number of orbits is precisely the number of ways in
which G can be rooted . To obtain all rootings of G, one simply chooses on e
point from each of the orbits as a root .

Occasionally we will need to restrict A to a subset Y of X, where Y is a
union of orbits of A. Therefore we denote by Al Y the set of permutation s
on Y obtained by restricting those of A to Y. For each a in A, the number of
elements in Y fixed by a is denoted by j 1 (al Y) . Then we can state the followin g
consequence of (2 .3 .3) .

Restricted Form of Burnside's Lemm a

N(AIY) = IAI - 1 E j1(a l V) .

	

(2 .3 .9)

aeA

Next we provide a slight generalization of (2 .3.3) called the Weighted
Form of Burnside's Lemma . Let R be any commutative ring containing the
rationals and let w be a function, called the weight function, from the object
set X of A into the ring R . In practice the weight function is constant o n
the orbits of A . Hence in this case we can define the weight of any orbit X i
to be the weight of any element in the orbit . For each orbit Xi , we denote
the weight of X i by w(Xi), and by definition, w(X i ) = w(x) for any x in X i .

Weighted Form of Burnside's Lemma The sum of the weights of the
orbits of A is given by

m

E w(X i) = I A I -1 E

	

w(x) .

	

(2.3 .10 )
i= 1

	

aeA x=a x

The proof is similar to the proof of (2 .3.3) and is omitted .
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We consider again the graph G in Figure 2 .3 .1 to illustrate this lemma ,
and to display a sum of cycle indexes in a way which will be used effectivel y
in Chapter 8. For each point k of G, we define the weight w(k) to be the cycle
index of the stabilizer of k in F(G). Thus

w( 1 ) = 1(si + s i s2)

	

(2.3.11 )

and

	

w(3) = 4(si + 2sis 2 + s2s 3 ) .

	

(2 .3 .12)

Note that

w(1) = w(2) = w(4) = w(6)

	

and

	

w(3) = w(5) = w(7) ; (2.3.13 )

thus in particular w is constant on the orbits .
We sketch the verification of (2 .3 .10) for this example by observing tha t

the sum of the orbit weights is w(1) + w(3) + w(4) + w(5) + w(7) = 2w(1) +
3w(3). Now the right side of (2.3 .10) is the sum

4
E E w(x) =

	

w(x) + . . . +

	

w(x)
i=1 x=a,x

	

x = alx

	

x = TQx

7

	

7

	

k=1

	

k= 3

where the last two terms in the above equation are found at once by inspectin g
a3 and a4 in (2 .3.8) . Using (2.3.13), this sum may be rewritten as 2w(1) + 3w(3) ,
which we saw is the sum of the orbit weights, and the verification is finished .

Similarly, the cycle index sum for all the different rooted graphs obtaine d
from any graph G can be obtained in terms of the weights of the fixed points
of I'(G).

2.4 POLYA'S THEORE M

Since most applications of Polya's main enumeration theorem hav e
required only the one-variable version and since the theorem is also mor e
easily understood in this case, we shall not provide details of the usua l
generalization to n variables .

First we introduce the power group [HP4], which we will encounte r
again and again later in this book . Let A be a permutation group with objec t
set X = {1, 2, . . . , n} and let B be a finite permutation group with a countabl e
object set Y of at least two elements . Then the power group denoted BA
has the collection Yx of functions from X into Y as its object set . The permu-
tations of BA consist of all ordered pairs, written (a ; fl), of permutations a
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in A and /3 in B . The image of any function fin YX under (a ; /3) is given by

((a ; /3)f)(x) = /3f (ax),

	

(2 .4 .1 )

for each x in X.
In order to lead to the classical Polya enumeration formula, we shal l

take B = E, the identity group on Y Now consider the power group EA
acting on Y X . Let w : Y --> {0, 1, 2, . . . } be a function whose range is the set o f
nonnegative integers, and for which Iw -1 (k)) < oo for all k . In particular, fo r
each k = 0, 1, 2, . . . let

ck = I w-1 (k )1

	

(2 .4.2 )

be the number of "figures" with weight k .
Then the elements y in Y which have w(y) = k, are said to have weight k

and w is called a weight function . Further the series in the indeterminate x ,
co

c(x) =

	

ckXk ,
k=0

(2.4.3)

which enumerates the elements of Y by weight, is called the "figure countin g
series ."

The weight ofafunction fin YX is defined by

w(f) = E w(f (x)),

	

(2 .4 .4)
xeX

and it is then easily seen that functions in the same orbit of the power grou p
EA have the same weight. Therefore the weight w(F) of an orbit F of EA is the
weight of any fin F. Since Iw -1(k)I < oo for each k = 0, 1 , 2, . . . , there are
only a finite number of orbits of each weight . Hence we let Ck be the number
of orbits of weight k. Then the series in the indeterminate x,

co

C(x) = E Ckxk ,

	

(2 .4.5)
k = 0

is called the "function counting series," or the "configuration counting series "
following Polya [P8] . Now we can finally state the main theorem of thi s
book which expresses C(x) in terms of Z(A) and c(x) . In this formula
Z(A, c(x)) is an abbreviation for Z(A ; c(x), c(x 2), c(x 3 ), . . .) .

Theorem (Polya's Enumeration Theorem) The function counting serie s
C(x) is determined by substituting for each variable Sk in Z(A), the figur e
counting series c(x k ) . Symbolically

C(x) = Z(A, c(x)) .

	

(2 .4 .6)
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This result is used so often throughout graphical enumeration that we wil l
frequently write PET for brevity instead of Polya's Enumeration Theorem .

Proof Let e be the identity permutation on Y. Then for each a in A, an d
each k = 0, 1 , 2, . . . , we can let (p(a, k) be the number of functions of weight k
fixed by (a ; E) . Now for each k, on restricting the power group EA to the
functions of weight k and applying the Restricted Form (2 .3.9) of Burnside' s
Lemma, we have

Ck = IAI -1 E gp(a, k) . (2.4.7 )
aeA

Therefore
00

C(x) = E IAI -1 E 9(a, k)xk (2.4 .8)
k=0

	

ae A

and on interchanging the order of summation, we have

C(x) = IAI -1 E E cp(a, k)xk . (2.4.9)
aeA k= 0

Now Ek o (p(a, k)xk is the counting series for all functions fixed by (a ; E )

and we seek an alternative form for this series .
Suppose f in YX is fixed by (a ; E) . Then (a ; E)f (x) = f (x) for all x in X,

but from (2.4.1) we have (a ; E)f (x) = Ef (ax) . Thus we must have f(ax) _
f (x) for all x, and hence fmust be constant on the disjoint cycles of a . Con-
versely, all functions constant on the cycles of a are fixed by (a ; E) .

Let Zr be a cycle of length r in a. Iff sends the elements of Zr to one of the
Ck elements of Y of weight k, then the contribution to the weight of f is rk .
Then it can be seen that the series

C(xr)
_ E

Ckx''

	

(2.4.10)
ll

	

k= 0

has as the coefficient of xrk for each k, the number of ways f can be defined on
the elements of zr so that f is fixed by (a ; E) and the contribution to w(f)
is rk . It follows that c(xr)-'r(a) enumerates by weight the ways of definin g
fixed functions on all the cycles of length r in a.

On considering all cycles of a, we can then express the series for fixe d
functions as the product

ao

	

n

E Oa, k)xk = k
c(xkyk(a)

	

(2 .4 .11 )
k=0

	

k= 1

Now (2.4.6) follows from (2 .4.9), (2 .4.11), and the definition of Z(A), and the '
proof is completed.

	

//
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1 2

	

1 2

4 3

	

4 3

Figure 2 .4 . 1
Two labeled necklaces .

To illustrate the theorem we shall consider a "necklace problem ."
In Figure 2.4.1 we have shown two necklaces, each with four beads . Each
of these has its beads labeled with the elements of X = {1, 2, 3, 4}, and eac h
has two white beads and two black . Clearly the number of labeled necklaces
constructed from black and white beads is 2 4 . To obtain the number of
unlabeled necklaces, we must identify necklaces such as those in Figure 2 .4 . 1
when one necklace differs from another only by a reflection or rotation of th e
string of beads . If we let Y = {a, b}, then each function f from X to Y cor-
responds to a labeled necklace in which bead number k in X has "color" f (k) .
Thus the necklace represented by f has if -1 (a)I beads of one color and
1f - '(b)i beads of the other color. Now let the identity group E2 act on Y.
To remove the labels, two necklaces should be identified whenever thei r
corresponding functions are in the same orbit of the power group E°° . If
we define w(a) = 0 and w(b) = 1, then 1 + x is the counting series for Y
and a function of weight k represents a necklace with 4 — k white beads
and k black beads. Therefore the function counting series C(x) here enumer-
ates unlabeled necklaces and the coefficient of x k is the number of such with k
black beads. From (2.4.6) in the PET, then ,

C(x) = Z(D4 , 1 + x).

	

(2.4.12)

From (2.2.11) we hav e

Z(D4 ) = s(si + 2sis 2 + 3s2 + 2s4 ) .

	

(2 .4.13 )

Then on carrying out the details of the substitution of the figure countin g
series 1 + x in Z(D 4) we have

C(x) = 1 + x + 2x2 + x 3 + x4.

	

(2 .4 .14)

The six unlabeled necklaces with four beads of two colors are now show n
in Figure 2 .4.2 .

iii : :iit :	 1

	

I l
Figure 2 .4 .2

The necklaces with four beads .
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The total number of necklaces is, of course, C(1) and hence the tota l
number may be obtained by evaluating the figure counting series 1 + x
at x = 1 and substituting 2 for each variable Sk in Z(D4 ). In general, when-
ever the figure counting series c(x) is a polynomial, so is the function countin g
series C(x). Then C(1), the number of orbits of functions without regard t o
weight is obtained on substituting c(1) for each variable in the cycle inde x
at hand .

Corollary The number of orbits of functions determined by the powe r
group E„A, is obtained by substituting the integer m for each variable in Z(A) :

N(EA„) = Z(A, m) .

	

(2.4.15)

We shall provide only the statement of the PET for n variables . The
proof follows the same course as above for the one-variable case . Let N
be the set of nonnegative integers and let N" =N x x N be the cartesia n
product of n copies of N. As before, the power group EA has object se t
YX , and w : Y -+ N", the weight function, has the property that for each z
in N", 1w-'(z)( < co . With component-wise addition in N", weights of func -
tions in Y X and orbits of EA are defined as before . By definition of the figure
counting series, c(x1 , x2 , . . . , x") has Jw-1 (r 1 , r 2 , . . . , r" )) as the coefficient o f
xi'x2Z • xn', and the function counting series C(x 1 , x2 , . . . , x") has as the
coefficient of x1'x? • •

	

the number of orbits of weight (t 1 , t 2 , . . . , t") .
We denote by Z(A, c(x 1 , x2 , . . ., x")) the polynomial obtained with each
variable Sk in Z(A) is replaced by c(xi , x2 , . . . , x„). Then the more general
result giving the PET in n variables can be expressed as follows .

Theorem If c(x 1 , x2 , . . . , x") is the figure counting series for Y, then th e
orbits of functions in Y X determined by the power group EA are enumerated
by weight with C(x 1 ,

	

, . . . , x ) x,,) and

C(x1,x2, . . .,x") = Z(A,c(x1,x2, . . .,x")) .

	

(2.4.16)

To illustrate this theorem, we return to the necklace problem . This time
we wish to determine the enumerator of necklaces with four beads when three
colors of beads are available. Therefore we let Y = {a, b, c} and we can con-
sider any function f from X to Y as representing a necklace with 1f -1(a) (
red beads, I f -1 (b)1 white beads, and ~ f -1 (c)j blue beads. If we let w(a) =
(0, 0), w(b) = (1, 0), and w(c) = (0, 1), then

w(f) = E w(f(x)),
xeX

(2.4.17)
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and w(f) is an ordered pair whose first coordinate is the number of white
beads in the necklace and the second is the number of blue . The number of
red beads is, of course, just XI minus the number of white and blue . Now, by
definition, the figure counting series is c(x) = 1 + x 1 + x2 . Hence by the
theorem, the necklace enumerator is

C(x 1 , x2) = Z(D4 , 1 + x 1 + x2) .

On carrying out the details of the substitution we obtai n

C(x 1 ,x2 )=1+x 1 +2xi+xi+xi+x 2 +2x2+x2+x2

(2.4.18)

+ 2x1 x2 + 2xix2 + xix2 + 2x 1x2 + x 1xl + 2xix2 . (2.4.19)

As a check, one can easily compute the coefficient sum for C(x 1 , x2 )
by evaluating Z(D4 , 3), which is 21 ; then compare (2.4.19) .

2.5 THE SPECIAL FIGURE SERIES 1 + x

There is a rather natural corollary to the PET which stipulates th e
significance of the coefficients of the polynomial obtained when 1 + x i s
substituted into the cycle index of an arbitrary permutation group A .
This observation, although quite easy to demonstrate, is exceptionally
powerful because every enumeration formula obtained from the PET b y
using the figure series 1 + x is necessarily a special case thereof . These
results will include the counting of necklaces, graphs, digraphs, roote d
graphs, and bicolored graphs. Thus we defer such applications of the corol-
lary until later.

We note now its impact on the five special groups whose cycle indexe s
are given in equations (2 .2.5, 6, 10, 11, 12) . Just as for individual elements of X
two r-sets S = { x 1 , . . . , x,} and S' = {xi , . . . , x;} in X are called A-equivalent
if for some a e A, aS = S' .

(2.5.1) Corollary to PET

	

The coefficient of x' in Z(A, 1 + x) is the num-
ber of A-equivalence classes of r-sets of X .

Proof In the figure counting series 1 + x, the term 1 = x° can indicate th e
absence of an object in X while x = x 1 stands for its presence. Thus x'
means that r distinct objects, forming an r-set, are present . The corollary
now follows at once from the PET .

	

//

In view of this corollary, we see that a permutation group A is transitiv e
if and only if the coefficient of x in Z(A, 1 + x) is 1 . Furthermore this poly -
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nomial always has end-symmetry of its coefficients because the number o f
classes of r-sets and (n - r)-sets are equal . For the symmetric group, i t
follows from the definition of S n that there exists a permutation taking a
given r-set onto any other . For A n , one only need note that an even permuta-
tion can be found which effects this mapping. The next two formulas can also
be verified by the brute force substitution of 1 + x into the respective cycl e
indexes :

Z(Sn,1+x)=1+x+ x2 + - + x n

	

(2 .5 .2)

Z(An,1+x)=1+x+ x2 +

	

+ x n .

	

(2 .5.3 )

The identity group of course produces the binomial coefficients :

n n
Z(E,,, 1 + x) =

	

x" .

	

(2 .5 .4)
r=0 r

The cyclic and dihedral groups are a bit more complicated . It is a routin e
matter to make a formal substitution of 1 + xk for sk in (2 .2.10) to obtain

Z(C,,, 1 + x) = n -1 E 9(k)(1 + x k )n/k .

	

(2.5.5 )
ki n

However a similar substitution into (2 .2.11) results in a less elegant-lookin g
equation. Rather than write this formula mechanically, we note that we have
already encountered it for n = 4 in (2 .4.14) where the polynomial so obtaine d
counts four-bead necklaces with a specified number of beads of each of tw o
colors. For arbitrary n, the result then gives the number of types of two -
color, n-bead necklaces .

2.6 ONE-ONE FUNCTIONS

It is now logically convenient to have at our disposal a theorem of
Polya which expresses the number of weighted 1-1 functions in terms o f
the cycle indexes of the symmetric and alternating groups and a figure
counting series . We shall use this result later to relate the generating functio n
for trees to that for rooted trees .

Let c(x) be the series that enumerates the elements of any set Y accordin g
to weight and let the identity group E have object set Y. Now consider th e
power group EA restricted to the 1-1 functions in Y X . If C(x) is the counting
series for the orbits of 1-1 functions determined by EA , we seek to express
C(x) in terms of c(x). We shall do this first with A = Sn ; then the solution to
the general problem follows quickly . Note that the orbits of 1-1 functions
determined by Es^ correspond to n-combinations or n-subsets of the elements
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of Y. Following Polya we have used Z(A„ — S„) as an abbreviation for
Z(A„) Z(S„), and we set Z(A O — So) = 1 .

Theorem The generating function C(x) which enumerates 1—1 function s
from n indistinguishable elements into a collection of objects with figure
counting series c(x) is given by

	

C(x) = Z(A„ — S,,, c(x)) .

	

(2.6.1)

Before proving the theorem we shall illustrate its use with an example fo r
n = 3 . Let c(x) be the generating function for the set Y of connected graphs,
so that the coefficient of x" in c(x) is the number of connected graphs o f
order p. It is known that the first few terms of c(x) ar e

c(x) = x + x2 +2x3 +6x4 +21x 5 + 112x 6 + •• .

	

(2.6.2 )

Next let C(x) be the generating function for graphs that have exactly thre e
components, all different . Consider the power group ES3 with object set Yx .
Then the orbits of 1—1 functions determined by ES3 correspond precisely to
the graphs enumerated by C(x) . Furthermore, the weight of each orbit is th e
order of the graph to which the orbit corresponds .

The cycle index formula for Z(A3 — S3) is already available in (2 .2.7) .
Therefore on substituting c(x k) for each variable Sk in this formula, the firs t
few terms of C(x) are seen to be

	

C(x)=2x6 +7x'+34x 8 +

	

.

	

(2 .6.3)

It is left to the reader to verify some of these coefficients by drawing th e
corresponding graphs .

Proof To prove (2.6.1), recall that c(x) enumerates the elements of any set Y
by weight and Es- has object set YX . It follows from PET that the counting
series for orbits of all functions determined by Es- is simply Z(S,,, c(x)) .
Therefore it is sufficient to show that Z(A,,, c(x)) counts these orbits of 1— 1
functions twice and all others just once .

We first note that the number of orbits of 1—1 functions from X to itsel f
determined by El- is 2. This is an immediate consequence of the easil y
demonstrated fact that any two such 1—1 functions are in the same orbit of En
if and only if they are both odd or both even . Thus Z(A,,, c(x)) counts twic e
those orbits of Es- which consist of 1—1 functions .

Next we show that orbits of Es., which consist of functions not 1—1 ar e
counted only once. To do this, consider such an orbit and any two function s
f and g in it . Then there is a permutation a in S„ such that for all x in X,
f (x) = g(ax). We need to show that f and g are in the same orbit of E''^
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This follows from the equation f (x) = g(ax) if a is even . Suppose, on the
other hand, that a is odd . Sincef is not 1—1, for some x i , x 2 in X with x i x2
we have f (x i ) = f (x 2 ) . Let /3 be the permutation that interchanges x l and x 2
and fixes all other elements of X. Of course f3, being a transposition is odd .
Thus a/3 is even, and for all x in X, f (x) = g(a/3x) . Thus f and g are also i n
the same orbit of EA^ and hence Z(A,,, c(x)) counts orbits of Esn which consis t
of functions not 1—1 exactly once .

	

//

The following corollary treats the general case, in which the orbits o f
1—1 functions on n objects are determined not by the symmetric group S, ,
but by any group A of degree n .

Corollary The generating function C(x) that enumerates 1—1 functions
determined by the figure counting series c(x) and any permutation group A
of degree n is given by

C(x) = fZ(AU — S n , c(x)) .

	

(2 .6 .4)

Proof Recall that c(x) enumerates the elements of Y by weight and
Z(A n — S n , c(x)) counts by weight the subsets of Y that consist of n elements .
As usual E is the identity group with object set Y and A is a permutation
group of degree n with object set X. Consider any n-subset Yl of Y. Then we
seek to establish that the number of orbits of En restricted to the 1—1 functions
in Y; is n MAI. But this conclusion follows immediately from the Restricte d
Form of Burnside's Lemma because the only permutation in E„ that fixes
any 1—1 function in Yi is the identity permutation, which fixes all n! of
them .

	

/ /
In our applications of this theorem, it is often necessary to sum th e

polynomials Z(A,, — Sn ) . We sometimes write Z(A cQ — S co ) instead of
E' o Z(An — Sn ) . Riordan [R15] established the following formula, which i s
analogous to (3 .1 .1),

co

	

Z(A,,, — S~ , f (x)) = exp

	

(— 1)k+ if (xk)/k .

	

(2 .6.5)
k= 1

EXERCISES

2.1 Prove that Burnside's Lemma (2 .3.3) gives the number of orbit s
determined by any group represented as a permutation group . Specifically,
let A be any (abstract) group and suppose 9 : A —p B is a homomorphism
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from A onto the permutation group B. Then the number N(B) of orbits of B
is given by

N(B) = IA 1 -'

	

il(ci'@)) •
aeA

2.2 How many orbits of functions are determined by the power group En'"?

How many are determined by En with A = Am , Cm , or Dm?

2.3 Find two nonisomorphic permutation groups A and B of smallest order
such that Z(A) = Z(B) .

	

(Polya [P8] )
2.4 Prove that the set of permutations in the power group BA is closed
under multiplication .

2.5 How many necklaces are there with five beads when three colors are
available ?

2.6 If the vertices of a cube are colored using three different colors, ho w
many different cubes are possible ?

2.7 If the faces of a cube are colored using four different colors, how man y
different cubes result ?

2.8 If five different colors are available and each line of the graph in Figur e
2.3.1 assumes one of these colors, how many different colored graphs are
possible ?

2.9 If G is any graph, how may the coefficient of Z(F(G), 1 + x) be inter-
preted? Illustrate using the graph in Figure 2 .3 .1 .

2.10 When the object set of the power group BA is restricted to 1–1 func -
tions, the group is denoted by BA * . Find a formula for the cycle index Z(BA' ) .

(Harary and Palmer [HP5] )

2.11 Find two isomorphic but not identical permutation groups of degree 6
and order 4 which share the same cycle index.

	

(Redfield [R10] )

2.12 The cycle index of the alternating group A„ given in (2 .2.6) can be
expressed in the form :

SkJk .

(j)

	

flkjkjk

2.13 >n Z(S,z) = exp[Ek ~ (sk/k)] .



L 'oodman, spare that tree !

Touch not a single bough !

In youth it sheltered me ,

And I will protect it now.

G. P. Morris

Chapter 3 TREES

We have seen in Chapter 1 several methods for determining the numbe r
pP

_ 2 of labeled trees of order p . We shall now consider the more difficul t
problem of finding the number of unlabeled trees, that is, the number of iso-
morphism classes of trees with a given number of points . The techniques
that we shall use can be readily adapted not only for finding generating
functions for trees with various specified properties but also for counting
treelike structures .

For example, in this chapter we shall find generating functions for rooted
trees, trees, forests, oriented trees, homeomorphically irreducible trees ,
identity trees, unicyclic graphs, functional digraphs, cacti, and 2-trees .
The first few coefficients of many of these generating functions may also b e
found in Sloane's book of sequences [S4] .

3.1 ROOTED TREES

It seems impossible to enumerate trees without first enumerating roote d
trees. Therefore we begin by using the Polya method of the preceding chapte r

51
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to obtain the generating function for rooted trees . We then employ a "dis-
similarity characteristic theorem" due to Otter [04] to relate this functio n
to the series that counts trees .

We will make use of the following well-known identity which sums th e
cycle indexes of all the symmetric groups :

E Z(Sn , f(x)) = exp E f (xk)/k .

	

(3 .1 .1 )
n=0

	

k= 1

A proof of (3 .1 .1) is omitted ; the easiest one involves comparing th e
coefficients of both sides, see Exercise 2 .13 .

For convenience, we take Z(S0) = 1 and we use Z(S,,,) instead of
o Z(Sn). Then the left side of (3 .1 .1) may be denoted by Z(S cc ,f(x)) .

Now let

T(x) =

	

Tpxp

	

(3 .1 .2)
p =

be the generating function for rooted trees . Thus Tp is the number of rooted
trees of order p. The rooted trees of order 4 or fewer are shown in Figur e
3.1 .1 . Hence the first four terms of T(x) are given by

T(x)=x+x 2 +2x 3 +4x4 + . . .

	

(3 .1 .3)

The following result of Polya [P8] can be used to calculate the co-
efficients of T(x).

Theorem The counting series T(x) for rooted trees satisfie s

T(x) = x exp E T(xk)/k .

	

(3 .1 .4)
k= 1

Proof We shall first find the generating function which enumerates roote d
trees in which the root has degree n . We observe that each of the latter trees
corresponds in a natural way to a "combination with repetition" of n rooted
trees. This correspondence is indicated for n = 4 in the next figure. More

0

0

Figure 3 .1 . 1

The smallest rooted trees .
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(0)

	

(b )

Figure 3.1 . 2

Four rooted trees and the corresponding tree whose root has degree 4 .

specifically, given a collection of n rooted trees, a new rooted tree is formed b y
adding one new point and making it adjacent to each of the roots of the n
given rooted trees. Clearly all trees whose roots have degree n can be formed
in this manner . To find out how many there are, we consider the powe r
group ES^ with object set Yx where E is the identity group, X = {1, . . . , n} ,
and Y is the set of all rooted trees . Then each function in Yx corresponds to
an ordered n-tuple of rooted trees . We define the weight of each rooted tree in
Y to be the number of points in the tree. Then T(x) enumerates the element s
of Y by weight and is called the "figure counting series" for Y. Thus the
weight of each function in Yx, as defined by (2 .4.4), is the total number o f
points in the n rooted trees of the n-tuple to which the function corresponds .

Since Sn consists of all permutations of X, the orbits of the power group
Es- correspond precisely to rooted trees whose root has degree n . Note that
the weight of each orbit, which is the weight of any function in it, is just on e
less than the total number of points in the rooted tree to which the orbi t
corresponds . Therefore on applying PET with A = Sn and T(x) as the figur e
counting series, we have Z(S,,, T(x)) as the function counting series, and
the coefficient of x" in Z(S,,, T(x)) is the number of rooted trees of order p + 1
whose roots have degree n . Multiplication of Z(S,,, T(x)) by x corrects the
weights so that the coefficient of x" in xZ(S,,, T(x)) is the number of these
trees with p points. Then on summing over all possible values of n, T(x)
itself is obtained :

co

T(x) = x E Z(S,,, T(x)).

	

(3 .1 .5)
n= 0

The proof is completed by applying the identity (3 .1.1) for sums of cycle
indexes to the right side of (3 .1 .5) .

	

//

It follows from this theorem that T(x) is uniquely determined by th e
functional equation (3 .1 .4) because formula (1 .2.8) provides a means of
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determining the coefficients of T(x) inductively . To see this, let

E amxm = E T (x')/k .

	

(3 .1 .6)
m=1

	

k= 1

Therefore

am = m -1 E dTd

	

(3 .1 .7 )
di m

and from formula (1 .2.8) it follows as in Otter [04] tha t

p
1Tp+ 1 = p- E kakTp-k+ 1 .

	

(3 .1 .8)
k= 1

When (3 .1 .7) and (3 .1 .8) are combined, Tp+ is expressed in terms of Tl , . . . , Tp :

p
Tp+1 = p—1 ft d )7; k ~ l .

k = 1 dik
(3.1 .9)

Earlier Cayley [C2] had found the following formula for T(x) which is
easily derived from (3 .1 .4) and vice versa :

co
T(x) = x fl (1 — xp ) — T p .

	

(3 .1 .10)
p= 1

To derive (3 .1.4) from (3 .1 .10), it is sufficient to show tha t

log(T(x)/x) = E T(x')/k .

	

(3 .1 .11 )
k= 1

This is accomplished in three steps by taking logarithms in (3 .1 .10), substitut -
ing the identity

log(1 — x') =

	

1 xpk/k,

	

(3 .1 .12)
k= 1

and interchanging the order of summation .
The number of rooted trees of order p has been determined for p < 2 6

in Riordan [R15, p . 138] and for p < 39 by A . J . Schwenk using (3 .1 .4) . Here
are the first few terms :

T(x)=x+x 2 + 2x3 +4x4 +9x5 + 20x6 +48x '

+ 115x 8 + 286x 9 + 719x 1 ° + • . • .

	

(3 .1 .13)

The coefficients of T(x) for p < 26 are found in Appendix I .
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3.2 UNROOTED TREES

Now that all 1—1 functions on n objects can be counted as in Section 2.6 ,

we need only the special case n = 2 to count unrooted trees . Let

t(x) =

	

t p -
p=

(3 .2 .1 )

be the generating function for trees, so that tp is the number of trees of order p .
The neatest possible formula that expresses the series t(x) for trees in term s
of the series T(x) for unrooted trees is provided by the main theorem of thi s
section in formula (3 .2.4) . In addition to the counting theorem for 1—1 func -
tions, the proof depends on a corollary of the dissimilarity characteristi c
theorem introduced next .

For any graph G, let p* be the number of dissimilar points, i .e . the number
of orbits of points determined by F(G) . The group of G also determine s
similarity classes of blocks. Let p* be the number of dissimilar points in th e
ith class of blocks among the b* dissimilar blocks . Then p* and p* are
related by formula (3 .2.2) of the next theorem. Otter [04] first found thi s
result for trees, but like so many theorems its proof is easier for the more
general case [HN2] . Therefore we consider arbitrary blocks instead of jus t
lines as in a tree .

Theorem (Dissimilarity characteristic theorem for graphs) For an y
graph G,

6*
p*—1= E(p* —1 ). (3.2.2)

To illustrate the theorem, we consider the graph of order 18 in Figur e
3 .2.1 . The points of this graph have been labeled so that similar points hav e
the same labels. Thus p* = 4. There are three classes of blocks, b* = 3 ;

4cl

	

o

	

o

	

X04
4

	

4

Figure 3 .2 . 1

A graph. wi ° -hree dissimilar blocks.
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the first consists of the bridges, the second is the 4-cycle, and the third contain s
the triangles. There are two dissimilar points in each class so that pi = Pi =
p3 = 2. Thus 3 = p* — 1 and pi — 1 + p2 — 1 + p3 — 1 = 3 also .

Proof The proof of the theorem is made by induction on number of classe s
of blocks. Let G be any graph. If there is just one class of blocks, b* = 1,
then p* = pi and (3.2.2) obviously holds . Otherwise, consider any block of G
that has exactly one cutpoint and suppose this block belongs to class number
one . Delete from G the points of the members of this class except for the cut -
points . The graph G' so obtained has b* — 1 classes of blocks and p* —
(pi — 1) classes of . points. On applying the induction hypothesis to G' ,
we have (3 .2.2) for G .

To apply this theorem to trees, let p* and q* be the number of dissimila r
points and lines, respectively, of any tree T A line of T is called a symmetry
line if its endpoints are similar, and s is the number of symmetry lines . The
tree in Figure 3 .2.2a has no symmetry lines, while that in (b) has one . The
tree in (a) has p* = 6 and each of its five classes of blocks has two dissimilar
points. Hence 5 = p* — 1 = E5_ (2 — 1) = 5 . The tree in (b) has p* = 2 ,
and one class of blocks has two dissimilar points while the other correspond-
ing to the symmetry line has only one . Hence 1 = p* — 1 = (2 — 1) +
(1 — 1) = 1 . The corollary as found by Otter then takes the following form .

Corollary (Dissimilarity characteristic theorem for trees) The number s
of symmetry lines of any tree is 0 or 1 an d

p* — (q* — s) = 1 .

	

(3 .2 .3)

Proof We first observe that s = 1 if and only if the tree is bicentered an d
the two central points are similar ; and otherwise s = 0 (see [H1, p . 35]) .
Note that q* is the number of dissimilar blocks, so b* = q*. Furthermore
p* = 2 for each class of blocks (lines) other than symmetry lines, for which

> 2<
(a)

	

(b )

Figure 3 .2 .2

Trees with and without symmetry lines .



3 .2 UNROOTED TREES

	

57

p* = 1 by definition . Therefore the right side of (3 .2.2) is q* — s and the proo f
is completed.

	

/ /

Now we are in a position to complete our derivation of Otter's elegan t
formula for t(x) .

Theorem The counting series t(x) for trees is expressed in terms of the
series T(x) for rooted trees b y

t(x) = T(x) — i (T 2(x) — T(x 2)) .

	

(3 .2 .4)

Proof The first step of the proof is to sum (3 .2.3) over all trees with exactly p
points. The result is

11=IP*—I(q*—s),

	

(3 .2.5)
but 1 1 = t p and p* is Tp . Furthermore, 1(q* — s) is the number Lp of
trees with p points rooted at a line which is not a symmetry line. Therefore
tp = T, — LP ; so if L(x) is the counting series for trees rooted at a non-
symmetry line, then

t(x) = T(x) — L(x) .

	

(3 .2 .6)

At this point we can apply formula (2 .6.1) of our theorem on 1—1 function s
to express L(x) in terms of T(x) . Note than any two different rooted trees
determine a tree rooted at a nonsymmetry line and this correspondenc e
illustrated in Figure 3 .2.3 can be specified by joining the two roots by a
distinguished line . Thus the trees counted by L(x) can be interpreted as 2-
subsets of the graphs enumerated by T(x) . Therefore we can apply (2 .6.1)
with n = 2 to obtain

L(x) = Z(A2 — S2 , T(x)) .

	

(3 .2.7)

Now Z(A2 — S2 ) = 1(s? — s2 ), and on setting s l = T(x) and s2 = T(x2) ,
formulas (3 .2 .7) and (3.2.6) yield the Otter formula for t(x) .

	

1/

Just as Cayley anticipated Polya on T(x) so he did Otter on t(x) . In fact i t
is a routine exercise to verify (3 .2 .4) from Cayley's original formula or from

0

U

Figure 3 .2 .3

Two rooted trees and the corresponding line-rooted tree .
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Polya's formula for tp . Both Cayley and Polya found involved expression s
for tp as the sum of tp and tp, the numbers of trees with 1 and 2 central point s
respectively. The verification is accomplished by forming E tpxp and using
the proverb "Every time you see a double summation sign interchange them ."

The values of tp for p < 26 have been computed using (3 .2.4) by Riordan
[R15, p. 138] . The first few terms of t(x) are given here and the rest of these are
in Appendix I :

t(x) = x + x 2 + x3 + 2x4 + 3x 5 + 6x6 + 11x'

+ 23x8 + 47x 9 + 106x 1 ° + - .

	

(3.2.8)

A forest is a graph whose components are trees . Now that trees have bee n
counted, the enumeration of forests follows easily . Let the counting poly-
nomial for forests with p points be

p— 1

fp(x)

	

fp,gxq,

	

(3 .2.9)
q= 0

where fp,q is the number of forests with p points and q lines. Then the generat -
ing function for forests is

oo

	

f (x , y) =

	

ypfp(x).

	

(3.2.10)
p= 1

To derive formulas forfp(x) and f (x, y), use is made of the counting serie s
for trees . The formula in [H4] for f(x, y) is obtained by the appropriate
application of PET and the generalization of formula (3 .1 .1) for any function
g(x, y) of two variables . Thus the number of forests is expressed in terms of th e
number of trees by

cc)

	

1 + f (x, y) = exp

	

(tk /n) (xk - l yk)n

	

(3.2.11 )
n=1 k= 1

Using logarithms it is easily seen that this can also be expressed a s

1 + f (x, y)

	

JJ (1 — x k— 1 yk)-tk '

	

(3 .2.12)
k= 1

which resembles the form of Cayley's solution [C2] for the number of roote d
trees. Now we give a more explicit formula [HP11] for fp(x) expressed i n
terms of the numbers t k .

Theorem The counting polynomial for forests with p points i s

P (

	

-
fp(x) =

	

1 1 t
k + jk

(J) k = 1

	

J k
and the sum is over all partitions (j) of p .

x (k -1)ik

	

(3.2.13)
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Proof Using the familiar identity for combinations with repetition (see
[R15, p . 7]). We find that the number of forests consisting of exactly j k trees.
each of which has exactly k points, is the binomial coefficien t

tk +Ik - 1

Jk

Since each of these trees has k — 1 lines we have for each q = 0 to p — 1

P (t k + j k - 1
fpg=E

	

(3.2.14)
(J) k = 1

	

Jk

where the sum is over those partitions (j) = ( j 1 , j2	 J ) of p such that

p
q = E (k — 1 )j k .

	

(3.2.15)
k= 1

The formula (3.2.13) for ff (x) may now be obtained by summing over all

partitions of p .

	

//

For example, using the series t(x) for trees and (3.2.13) with p = 6, one
easily finds

f6 (x) = 1 + x + 2x 2 + 4x3 + 6x4 + 6x5 .

	

(3 .2.16)

On multiplying equation (3 .2.13) by yP and summing over all positive
integers p, one can obtain (3 .2.11) or (3 .2 .12) by straightforward manipulation .

3.3 TREES WITH SPECIFIED PROPERTIES

Many classes of trees can be enumerated by following the procedure in th e
previous sections of this chapter. Usually the generating function for th e
rooted variety is determined first by using PET. Then a "dissimilarity
characteristic theorem" provides the means for expressing the series fo r
unrooted trees in terms of that for rooted trees . In this section we shall con-
sider several problems which can be treated successfully in this manner .

The first problem is to enumerate oriented trees . An oriented tree is a
tree in which each line is assigned a unique direction . Let r(x) and R(x) be
the counting series for oriented trees and rooted oriented trees respectively .
All eight oriented trees of order 4 are shown in Figure 3 .3 .1, verifying that the
coefficient of x4 in r(x) is 8 .

The following result of [HP 14] serves to determine the number of oriented
trees .
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1111AA /A, A
Figure 3 .3 . 1

The oriented trees of order 4 .

Theorem The counting series r(x) and R(x) for oriented trees and roote d
oriented trees satisfy :

2

R(x) = x exp E R(xk)/k

	

(3 .3 .1)
k= 1

r(x) = R(x) — R 2 (x) .

	

(3 .3 .2)

Specifically, we find

r(x)=x+x2 +3x3 +8x4 +27x5 +91x 6 +

	

(3 .3.3)

The first 21 coefficients of r(x) and R(x) are found in [R15, p . 138] .

Proof We define a planted tree to be a rooted tree in which the root has
degree 1 and we let R(x) be the counting series for planted, oriented trees .
The r-subsets of these planted trees correspond to rooted oriented trees i n
which there are n arcs incident with the root (see Figure 3 .3 .2) . On applying
PET to the symmetric group S„ with k(x)/x as the figure counting series ,
we obtain Z(S n , R(x)/x) as the function counting series in which the co -
efficient of f 1 is the number of rooted, oriented trees of order p where th e
root is incident with n arcs . The use of R(x)/x as the figure counting serie s
here in effect assigns a weight of zero to the roots of the planted trees, an d
hence to the roots of the rooted trees . On multiplying Z(S,,, R(x)/x) by x .

and

Figure 3.3 . 2

Three planted, oriented trees and their corresponding tree .
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therefore, the proper adjustment is made . Then on summing over all non -
negative integers n, R(x) is expressed in terms of R(x) by

R(x) = xZ(S o, , R(x)/x) .

	

(3 .3.4)

But for every rooted tree of order p we can construct two different plante d
trees of order p + 1 by adding a new arc directed either to or away from th e
root. Since all planted trees can be obtained uniquely in this way ,

R(x) = 2xR(x) .

	

(3 .3.5)

On substituting this series for k(x) in (3 .3.4) and applying the identity (3 .1 .1) ,
formula (3 .3 .1) of the theorem is verified .

To express r(x) in terms of R(x), we observe that oriented trees have n o
symmetry lines, s = 0 . Hence the dissimilarity characteristic equation fo r
these trees is simply

1 = p* - q* .

As in the case for ordinary trees, it follows from (3 .3 .6) that

r(x) = R(x) — L(x),

(3.3.6)

(3 .3.7)

where L(x) is the enumerator' of oriented trees rooted at an arc. These trees
rooted at an arc correspond precisely to functions from the set { 1, 2} into the
set of rooted, oriented trees . Given such a function f the corresponding
tree rooted at an arc is obtained by adding the root arc directed from th e
root off(1) to the root off (2) . The enumerator of such functions for which th e
figure counting series is R(x) is simply R 2 (x) . Note that one obtains the same
result by applying PET, namely Z( E2 , R(x)) . Thus L(x) = R 2(x) and the proo f
is completed on making this substitution in (3.3 .7) .

	

//

Next we shall consider homeomorphically irreducible trees, which have
no points of degree 2 . Those through order 8 are shown in the next figure .
Let h(x), H(x), and H(x) be the counting series for homeomorphicall y
irreducible trees, rooted trees, and planted trees respectively . The co-
efficients of these series can be calculated using the relations in the nex t
theorem of [HP14] .

t We already used L(x) in the preceding section for trees rooted at a line not a symmetry
line, and in Section 3.5, the same notation L(x) will be used in a similar way for 2-trees . We hop e
the meaning will always be clear by context .
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Figure 3.3 . 3

The smallest homeomorphically irreducible trees .

Theorem The counting series H(x), H(x), and h(x) for homeomorphically
irreducible trees satisfy :

2

H(x) 1 +

x
x exp

	

k(zkk)

	

(3.3 .8)
k= 1

H(x) = 1
	 +	

xH(x) — 1 (H2(x) + H(x2))

	

(3.3 .9)

h(x) =(x	
— 1 H(x) + 1 +2x

H(x).

	

(3 .3 .10)
x

	

x

Explicitly ,

h(x) = x + x 2 + x4 + x 5 + 2x6 + 2x ' + 4x8 + 5x9

+ 10x 1 ° + 14x 11 + 26x 12 +

	

(3 .3 .11 )

Proof We begin by observing that n-subsets of planted trees correspond to
planted trees in which the point adjacent to the root has degree n . This
correspondence is indicated in Figure 3 .3 .4 where the roots of three plante d
trees are identified and a new point is introduced as the root of the ne w
planted tree. With H(x)/x as the figure counting series, Z(S,,, H(x)/x)
enumerates these planted trees, but the new root and the identified point s
have not yet been taken into account . The proper adjustment is made b y
multiplying by x 2 . Then on summing over all n >— 2 we again obtain H(x) ,
but must add x 2 to allow for the planted tree of order 2 :

H(x) = x 2 + x2 E Z(Sn , H(x)/x) .

	

(3.3.12 )
n=2
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0

Figure 3 .3. 4

Three planted trees and the corresponding planted tree of order II .

The identity (3 .1 .1) can now be applied to (3 .3.12) to yield the first equatio n
(3.3 .8) of the theorem, from which the coefficients of H(x) can be calculated .

Next we verify (3 .3.9) which expresses rooted trees in terms of plante d
trees . Now Z(S2 , H(x)) counts planted trees in which the point adjacent t o
the root has degree 3, and x(H(x) — H(x)) counts planted trees in which the
point adjacent to the root has degree 1 or greater than 3 . Hence H(x) also
satisfies

	

H(x) = x(H(x) — H(x)) + Z(S 2 , H(x)) .

	

(3 .3.13)

On carrying out the substitution of H(x) in Z(S2) and solving for H(x), th e
formula (3 .3.9) is obtained .

Finally, we require the counting series L(x) for homeomorphically
irreducible trees rooted at an unsymmetric line, so that we can apply th e
dissimilarity characteristic theorem and express h(x) in terms of H(x) and
H(x). To do this we observe that every pair of different planted trees with a
total of k points corresponds to a tree of order k + 2 rooted at an unsym-
metric line . This 1—1 correspondence is specified by joining the point s
adjacent to the roots of the two planted trees and deleting the roots as i n
Figure 3.3.5. Formula (2.6.1) of the theorem on 1—1 functions is again used t o
obtain Z(A 2 — S2 , H(x)) as the enumerator of pairs of different plante d
trees. On division by x 2 the weights are properly adjusted, and then i t
follows from the dissimilarity characteristic equation (3 .2.3) that

	

h(x) = H(x) — x -2Z(A 2 — S2 , H(x)) .

	

(3.3.14)

Figure 33 .5
Two planted trees and the corresponding line-rooted tree .



64

	

3

	

TREES

I

	

0

	

0

	

0 0

	

0

	

0

	

0

	

-00o

	

0

	

o

	

0

o

	

I.

	

0

	

0

	

0

	

0

	

0

	

0

	

0 0

	

0

	

0

	

0

	

0

oolloo-0

Figure 3 .3.6
Small identity trees .

On substituting H(x) in Z(A 2 — S2), equation (3 .3.10) is obtained and th e
proof is completed.

	

//

Next we consider identity trees, whose automorphism group is the identit y
group. The identity trees of orders 7 through 9 are displayed in Figure 3 .3 .6.
The only one of order less than 7 is the trivial tree .

The absolute T1 of a rooted or line rooted tree T is the underlying un-
rooted tree with the same points and lines as T It is clear that if F(I TI) i s
the identity group, then so is F(T), but not conversely . The small rooted
identity trees are shown in Figure 3 .3.7. Note that the groups of their absolute s
are not necessarily the identity .

The following theorem of [HP14] relates the series for rooted and un-
rooted identity trees .

Theorem Let u(x) and U(x) be the counting series for trees and roote d
trees whose group is the identity . Then

U(x) = x exp E (—1)k+ 1 U(xk)/k

	

(3.3 .15 )
k= 1

u(x) = U(x) — 2(U2(x) + U(x 2 )).

	

(3 .3.16)
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Figure 3 .3 .7
The small rooted identity trees .
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Proof The verification of (3 .3 .15) is straightforward. From formula (2 .6 .1 )
in Polya's theorem for 1—1 functions, we see that xZ(A„ — S,,, U(x)) is th e
counting series for rooted trees with trivial group and root degree n > 1 .
Summing over all n, (2 .6.5) yields the formula for U(x) .

Since there are no symmetry lines in these trees, the dissimilarity charac-
teristic equation is simply 1 = p* — q* = p — q . Therefore to express u(x)
in terms of U(x) we seek generating functions which enumerate the number o f
ways that identity trees can be rooted at points as well as lines . Specifically ,
let U 1(x) and U2(x) be the respective counting series for rooted and line -
rooted trees the group of whose absolute is the identity . It then follows that

u(x) = U 1 (x) — U2(x) .

	

(3.3.17)

In attempting to express U 1 (x) and U2(x) in terms of u(x), the first step
is to let V1 (x) and V2(x) be the respective generating functions for roote d
trees and line-rooted trees T which have the property that F(T) is the identit y
group but I'(I TI) is not . Then we can writ e

U 1 (x) = U(x) — V1 (x) (3.3.18)
and

U2(x) = Z(A2 — S2 , U(x)) — V2 (x) . (3 .3 .19)

At this point, however, we observe that since

(3.3.20)u(x) = U(x) — Z(A 2 — S 2 , u(x)) + V2 (x) — V1 (x),

we need only determine the difference between V1 (x) and V2(x) in terms of
U(x). In particular, we now show tha t

V1(x) — V2(x) = U(x2) .

	

(3.3.21)

We consider all trees T whose group is not the identity and then hav e
two cases for the contributions of these trees to V1 (x) — V2(x) .

Case 1 T has no symmetry line . We investigate how many rooted tree s
T' and line-rooted trees T" with identity group have T as absolute. If there
exist any such trees T' or T", then F(T) has exactly one element besides the
identity, and this element must permute two branches at some point v l of T.
Each of the two similar branches at v 1 , considered as rooted trees, has the
identity group. If each of these branches has n + 1 points, then there are
exactly n rooted trees T' such that I T'I = T. Moreover, the line-rooted tree s
T" obtained by rooting the n lines of one of these two branches also hav e
T"I = T. We conclude that for all these trees the number of rooted trees
with identity group and absolute T equals the number of line-rooted tree s
with identity group and absolute T. Hence their contribution to V1 (x) — V2(x)
is O .
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Case 2 T has a symmetry line. Here the order of F(T) is at least 2 .
If there exist rooted trees T' or line-rooted trees T" with identity group an d
absolute T, then F(T) has order 2 and the nonidentity element permutes th e
central points of T. Therefore if T has 2n points, there are n rooted trees T'
such that IT] = T, and n — 1 line-rooted trees T" such that IT") = T. Thus
for each tree T with a symmetry line and a group of order 2, the number of
rooted trees with absolute T is one greater than the number of line-roote d
trees with absolute T. Thus each such tree of order p contributes 1 to the
coefficient of x" in Vl (x) — V2 (x) .

Therefore we can conclude that V1(x) — V2 (x) is the generating function
for trees with a symmetry line whose groups have order 2 . But u(x2 )
enumerates these trees and hence (3 .3 .21) is verified. Now the entire proof i s
completed by substituting — U(x 2) for V2 (x) — V1(x) in (3 .3 .20). //

Formulas (3 .3.15) and (3.3.16) of the theorem have been used to determin e
the following coefficients :

u(x)=x+x 7 +x8 +3x 9 +6x 1 °+ 15x 11 +29x12 + • .

	

(3.3.22)

In addition to oriented, homeomorphically irreducible, and identit y
trees, formulas may be found in [HP 14] for numerous other species including :

1. trees with a given partition (or degree specification) ;
2. trees with a given diameter ;
3. directed trees, in which each line is assigned one direction or bot h

directions ;
4. signed trees, in which each line is assigned a plus or minus sign ;
5. trees of strength s, in which there are at most s lines between any pair o f

points ;
6. trees of given weight, in which integral weights are assigned to the point s

and the weight of a tree is the sum of the weights of its points .

All of these tree-counting problems are solved in a manner analogous t o
that used for the three solutions discussed above . Similarly, one can enumerat e
trees whose points have degree 1 or n with n > 3. In fact Polya [P7] solved
the latter problem for the case n = 4, thus determining the generating
function for the saturated hydrocarbons, CnH2n+ 2

Since trees can be embedded in the plane, we can ask for the number o f
plane trees of order p (see Figure 3 .3.8) . When a rooted tree is embedded i n
the plane, a cyclic order is induced on the lines incident with the root .
It is shown in [HPT1] that the generating function P(x) for rooted plan e
trees can be expressed in terms of the cycle index sum of the cyclic group s
and the series P(x) for planted, plane trees . Then it is shown that the series
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0 0 o-	 oV00
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0

Figure 3 .3 .8

Four different plane trees of order 7.

p(x) for plane trees is determined by P(x) and P(x) . Furthermore, the coeffi-
cients of P(x) can be determined in the explicit form of the first equation o f
the following theorem.

Theorem If P(x), P(x), and p(x) are the counting series for planted, rooted ,
and ordinary plane trees, then

09 1 2n — 2 n+ ~P(x) =

	

—

	

x

	

(3 .3.23)
n= 11 n— 1

P(x) = x

	

Z(C,,, P(x)/x),

	

(3 .3.24)
n= 0

p(x) = P(x) — (1/2x2 ) [P 2(x) — P(x2)] .

	

(3 .3.25 )

The first few terms of p(x) are

p(x)=x+x2 +x3 +2x4 +3x 5 +6x6 + 14x' +• . (3 .3 .26)

Curiously, P(x) also counts the planted plane trees in which each poin t
has degree 1 or 3 . That is, the number of planted plane trees of order p i s
also the number of planted plane trees with p — 2 points of degree 3 and
p — 1 points of degree 1. This fact is illustrated for p = 5 in the next tw o
figures. The dual form of this observation asserts that P(x) counts the numbe r

Figure 3.3 .9

The five, planted, plane trees of order 5 .
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Figure 3 .3 .10

The five planted, plane trees whose points have degree I or 3 .

of ways of subdividing a convex n-gon rooted at an oriented line into triangular
faces by means of diagonals . The five pentagons corresponding to the tree s
of Figure 3 .3.10 are displayed in Figure 3 .3.11 . Brown [B3] points out that
the result has been discovered many times, and traces it back to Euler [El] .

The coefficients of P(x), usually called the Catalan numbers, also coun t
the number of nonassociative products of n terms . The connection of trees
with such parenthesizing schemes is beautifully developed by Comtet i n
[C5, p. 64] .

The list of solved tree-counting problems is extensive and therefore many
more of them are introduced in the exercises .

3.4 TREELIKE GRAPH S

The techniques of this chapter can be adapted to obtain generatin g
functions for many classes of graphs which either resemble trees or contai n
trees as induced subgraphs. We shall consider in some detail the problem s
of counting unicyclic graphs, functional digraphs, block-cutpoint-trees ,
block graphs, and cacti .

We shall first count unicyclic graphs because the approach used t o
enumerate them can be specialized to count functional digraphs . A unicyclic
graph is connected and has just one cycle . If G is unicyclic and its cycle ha s
length n, then G may be regarded as having a rooted tree, possibly the

Figure 3.3.11

The five triangulated pentagons with an oriented boundary line .



3 .4 TREELIKE GRAPHS

	

69

trivial one, attached to each of the n points of its cycle . Therefore let Y be
the set of rooted trees with counting series T(x) found in equation (3 .1.4) .
If the power group E°^ has object set YX , then the orbits of functions in YX
correspond precisely to unicyclic graphs . Hence PET gives the next result .

Theorem The counting series U„(x) for unicyclic graphs whose cycle ha s
length n is given by

U„(x) = Z(D,,, T(x)) .

	

(3 .4 .1 )

See [R15, p . 150] for the coefficients of xk in U„(x) with n and k < 10 .
A digraph is functional if every point has outdegree 1 . The concept of a

functional digraph arises in a psychological context in the study of th e
structure of a group of people in which each member extends exactly on e
invitation to another member . Our object now is to find a generating functio n
whose coefficients give the number of isomorphically distinct functiona l
digraphs with a given number of points [H 10] . It will be seen that thes e
digraphs correspond to functions which are fixed-point free. Davis [D1]
has found an explicit formula for the number of types of functions on a
finite set (see also [P2]) . His methods may be readily used to solve thi s
variation of the problem. However, in the process of deriving this generating
function, we find certain structural properties of functional digraphs whic h
are of independent interest . In particular, a functional digraph is construct-
ible from directed cycles and rooted trees .

If Z is a directed cycle of a functional digraph D, then by D — Z we mean
the digraph obtained from D on removing all the lines of Z . Recall that a
tree to the point u is obtained from a rooted tree with root u on orienting
each of its lines so that it is directed toward u . Now we are ready to characteriz e
functional digraphs, the proof can be found in [HNC1, p . 325] .

Theorem A digraph D is functional if and only if each of its weak com-
ponents consist of exactly one directed cycle Z and for each point u of Z, th e
weak component R(u) of D — Z which contains u is a tree to the point u.

It follows from PET and this characterization theorem that the countin g
series v(x) for functional digraphs (with nk cycles of length k) is given by

v(x) = E = Z(S,, k , Z(Ck, T(x))),

	

(3 .4.2)
k= 2

where the sum is over each n k = 0 to co . On interchanging the sum and
product symbols, we obtai n

v(x) + 1 = n Z(S., Z(Ck , T(x))).

	

(3 .4 .3)
k=2
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Using formula (3.1 .1) for summing cycle indexes of the symmetric groups ,
we obtain the next formula.

Theorem The counting series v(x) for functional digraphs is given b y

v(x) + 1 = exp E (1/n) E Z(C k , T(x n )) .

	

(3 .4 .4)
n=1

	

k= 2

By clever algebraic manipulations, Read [R3] reduced this formula t o

x
v(x) + 1 =

T(x)

nfl
(1 — T(xn )) -1 .

	

(3 .4.5)

The only difference between a function and a functional digraph is tha t
the latter has no loops, or fixed points . Thus v(x) enumerates (the iso-
morphism types of) functions that are fixed-point free . Only a slight modifi-
cation of (3 .4.3) is required to enumerate the total number of functions :

Z(Sc , Z(Ck , T(x))).

	

(3 .4.6)
k= 1

In this formula the coefficient of xn is the formula "fcn(n)" of Davis [D1] .
Read [R3] calculated the numbers of functional digraphs and function s
displayed in Table 3.4.1 .

TABLE 3 .4. 1

n 1 2 3 4 5 6 7 8 9 10 1 1

Functional digraphs 0 1 2 6 13 40 100 291 797 2 273 6 38 9
Functions 1 3 7 19 47 130 343 951 2 615 7 318 20 491

It has often been observed that a connected graph with quite a fe w
cutpoints bears a resemblance to a tree . We now make this notion explici t
by associating with every connected graph G a tree bc(G) which reflects thi s
resemblance, [HP16] . The block-cutpoint-tree bc(G) is the graph whose se t
of points is the union of the set of blocks and the set of cutpoints of G, with
two points adjacent if one corresponds to a block of G, and the other to a
cutpoint of G in that block. It is easy to show that if G is connected, the n
bc(G) is, indeed, a tree .

We now define a be-tree as a bicolored tree in which every endpoint ha s
the same color, say blue while the other color is coral . Thus the distance
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between any two endpoints is even . It then follows, see [H1, p. 36] that every
be-tree is the block-cutpoint tree of a connected graph and conversely .
Therefore, to enumerate block-cutpoint trees, we need only count bc-trees .
Let

t (x , y) =

	

E

	

tm nxmyn ,

	

(3 .4.7)
m= 1,n= 0

where tm,n is the number of bc-trees with m blue points and n coral points .
Similarly let T(x, y), TB(x, y), Tc(x, y) be the generating series for rooted
bc-trees, bc-trees rooted at a blue point, and bc-trees rooted at a coral point ,
respectively .

Theorem The counting series for bc-trees satisfy :

Tc(x, y) = y(Z(S ., TB(x, y)) — TB(x, y) — 1) ,

TB(x, y) = xZ(S co , Tc(x, y)) + yTB(x, y),

(3.4.8 )

(3.4.9 )

T(x, y) = TB(x, y) + Tc(x, y), (3 .4.10)

t(x, y) = T(x, y) — TB(x, y)(Tc(x, y) + yTB(x, y)) . (3 .4.11)

The proof may be found in [HP16] . Explicitly,

(3.4.12)
t (x, y) =x + x2y + x3(y + y2 )+ x4(y + y2 + 2y3)

+ x5 (y + 2y2 + 3y3 + 3y4) + . . . .

The block graph, denoted B(G), of a given graph G has as its points the
blocks of G and two points are adjacent if the corresponding blocks have a
point in common. Norman [Ni] obtained generating functions for connecte d
graphs in which every block is complete . These are shown to be block graph s
in [H1, p . 30]. In light of this correspondence the formulas of the previou s
theorem can be used, following [HP16] to count block graphs .

Corollary The series B(x) and B(x) that enumerate connected rooted and
unrooted block graphs satisfy

B(x) = TB(x,1)=x+x2 +3x 3 +8x4 +25x5 +••• (3.4.13)

B(x)=t(x,1)=x+x2 +2x 3 +4x4 +9x 5 +••• . (3.4.14)

The first four coefficients of (3 .4.14) are verified in Figure 3 .4.1 .
A cactus is a connected graph in which no line lies on more than one

cycle. These graphs were formerly called "Husimi trees" and their definition t

t This term received much criticism because Husimi trees are not necessarily trees .
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Figure 3 .4. 1

The smallest block graphs .

was given by Uhlenbeck [UF1] and Riddell [R4] following a paper b y
Husimi [H16] on the cluster integrals in the theory of condensation i n
statistical mechanics. To enumerate them, we require an appropriate dis-
similarity characteristic theorem [HN1], but here we shall only illustrat e
its use by counting triangular cacti [HN1] in which every line is in a triangle.

For a given cactus H, we denote by p*, q*, and r* the number of dissimila r
points, lines, and cycles respectively, and by s the number of symmetry lines
not in a cycle. Let C be any cycle of H which has n z 3 points . Then A =
F(H)Ic is the group of H restricted to C and hence is a subgroup of D . Now
suppose n is even and JAI = 2. Then there are two possibilities for the non -
trivial element a of A. Either a fixes two points of C or it fixes two lines of C.
In the first case, C is called a type-1 cycle and in the second, a type-2 cycle .
Let r* be the number of similarity classes in H of type-i cycles for i = 1 and 2 .
Now the theorem can be stated as follows (note that for all H we have the
special Euler—Poincare formula 1 = p — q + r) .

Theorem (Dissimilarity characteristic for cacti) The classes of points ,
lines and cycles for any cactus satisfy

1 = p* — (q* — s) + (r* — ri + r2 ) .

	

(3.4.15)

The details of the proof may be found in [HN1] .
For brevity, we call a triangular cactus a A-cactus. By specializing

(3.4.15) to A-cacti, we find

1 = p* — q* + r* .

	

(3 .4 .16)

Therefore to enumerate these, it is necessary to find the generating function
for A-cacti which are rooted at a point, at a line, and at a triangle. For
convenience, we adopt the convention that a single point is a A-cactus .
Let D(x) be the generating function for these graphs which are rooted at a
point, i .e ., the coefficient of x" is the number of trees with n triangles. If the
root point has degree 2, the series is just xZ(S2 , D(x)), hence

D(x) = Z(S c , xZ(S2 , D(x))) .

	

(3.4.17)
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A AL L,2iL

Figure 3 .4 . 2

Small triangular cacti.

Then the series for these A-cacti which are rooted at a line is xD(x)Z(S2 , D(x))
and for those rooted at a triangle xZ(S 3 , D(x)) . Now by summing formul a
(3 .4.16) over all these we have an expression (3 .4.19) for d(x), the series that
counts A-cacti, in terms of the series D(x) for rooted A-cacti .

Theorem The series D(x) and d(x) for rooted and unrooted triangular
cacti satisfy :

ao Y k

D(x) = exp E 2k (D2(xk ) + D(x2k)),

	

(3 .4.18)
k= 1

d(x) = D(x) - -x-(D3(x) — D(x3)) .

	

(3 .4.19)

In particular, from (3 .4.18) we fin d

D(x) = 1 + x + 2x 2 + 5x 3 + 13x4 + 37x 5 + 111x6
(3.4.20)

+ 345x' + 1105x8 + ••• .

From (3 .4.19) it follows that

d(x) = 1 +x+x 2 + 2x 3 +4x4 + 8x5 + 19x6
(3 .4.21 )

+ 48x' + 126x8 + • ,

and the first few coefficients are seen to agree with Figure 3 .4.2. For a com-
plete discussion of cacti consisting only of quadrilaterals, see [HUI] .

3.5 TWO-TREES

In this section some higher dimensional concepts corresponding to tree s
are studied . In order to enumerate the two-dimensional structures so obtained,
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Figure 3 .5 . 1

The graphs of the small 2-trees .

called 2-trees, a dissimilarity characteristic theory is investigated and Polya' s
enumeration theorems are applied . Our methods can be specialized t o
count those 2-trees which are embeddable in the plane, thus providing a
new approach to the old problem of determining the number of triangulation s
of a polygon .

In [HP12] we defined an n-plex as an n-dimensional simplicial comple x
in which every k-simplex with k < n is contained in an n-simplex. We wil l
only be concerned with 2-plexes, and for convenience 0-simplexes, 1-sim-
plexes, and 2-simplexes are called points, lines, and cells respectively. The
two-dimensional trees, also called 2-trees can now be defined inductively .
The 2-plex with three points is a 2-tree and a 2-tree with p + 1 points i s
obtained from a 2-tree with p points by adjoining a new point w adjacent t o
each of two adjacent points u and v together with the accompanying cel l
{u, v, w}. The definition of a k-tree for k > 2 is similar. For purposes of
enumerating 2-trees, one need only consider their underlying graphs o r
1-skeletons, which are shown in Figure 3 .5.1 for p < 6 .

By the number of dissimilar points p* of a 2-tree we mean as usual the
number of orbits of points ; analogous definitions are made for the numbe r
q* of dissimilar lines and r* for cells .

Theorem (Dissimilarity characteristic for 2-trees) For any 2-tree wit h
q* dissimilar lines, q* dissimilar cells, s t cells with two similar lines, s 2 cells
with all three lines similar, and s = s l + 2s2 ,

q* + s — 2q* = 1 .

	

(3 .5 .1 )

Now we proceed to develop the generating functions for 2-trees . Let t „
be the number]' of 2-trees with n cells . The counting series for 2-trees i s

t This is the same t„ notation as used earlier for trees and earlier yet for labeled trees, bu t

we have run out of letters and hope that this will not cause too much confusion .
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denoted by

t(x) = E tnxn .
n=1

(3.5.2)

In order to derive formulas for t n , we will make use of the correspondin g
series for various kinds of rooted 2-trees. First let M 1(x) and N i (x) be the
series for 2-trees rooted at a symmetric and an unsymmetric end-lin e
respectively. Further, let M(x) and N(x) be the series for 2-trees rooted a t
any symmetric and any unsymmetric line respectively . The following two
equations express M l (x) and N 1 (x) in terms of M(x) and N(x) :

M 1 (x) = x(1 + M(x 2 ) + 2N(x2 )),

	

(3 .5 .3)

N 1(x) = xZ(A 2 — S2 , 1 + M(x) + 2N(x)).

	

(3 .5.4)

Next we express M(x) in terms of Ml(x) and N 1(x) :

M(x) =

	

Z(Sn , M 1 (x) + N 1(x 2 )) .

	

(3 .5 .5 )
n= 1

Using the identity (3 .1 .1), equation (3 .5 .5) may be writte n

1 + M(x) = exp E (1/n)[M1(xn) + N 1 (x2n )] .

	

(3.5.6)
n= 1

Now note that the counting series for 2-trees rooted at an oriented line i s
simply M(x) + 2N(x). From this observation we hav e

co

M(x) + 2N(x) =

	

Z(S,,, M 1 (x) + 2N 1 (x)) .

	

(3 .5.7)
n= 1

Again using the identity (3 .1 .1), we may write (3 .5.7) as

1 + M(x) + 2N(x) = exp E (1/n)[M1(xn) + 2N1 (x n )] .

	

(3 .5.8)
n= 1

Thus equations (3.5.6) and (3.5.8) may be used to solve for N(x) in terms
of M 1 (x) and N 1 (x). Now using all four formulas (3 .5.3), (3 .5.4), (3 .5.6) and
(3.5.8), the coefficients of M(x) and N(x) can be calculated . For the first few
terms we have

M(x)=x+x 2 +2x3 +3x4 +6x 5 +•••,

	

(3 .5.9)

N(x) = x2 + 4x3 + 18x4 + 77x5 + • • • .

	

(3 .5 .10)

The series for 2-trees rooted at a line is denoted L(x) and since L(x) =
M(x) + N(x), we have immediatel y

L(x)=x+2x 2 +6x 3 +21x4 +83x 5 + . . • .

	

(3 .5.11)
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We denote the series for 2-trees rooted at a cell (triangle) by A(x) . It can
be shown that

Q(x) = xZ(S3 , 1 + M(x) + 2N(x)) — xN(x)(1 + M(x2 ) + 2N(x2)). (3.5.12)

Having expressed A(x) in terms of M(x) and N(x), we substitute (3.5.9) and
(3.5.10) in equation (3 .5.12) to obtain

Q(x) = x + x2 + 3x3 + 10x4 + 39x5 + • • • .

	

(3 .5 .13 )

Following the notation of (3 .5.1), the Dissimilarity Characteristic
Theorem for 2-trees, we denote by s1 (x) the counting series for 2-trees roote d
at a cell with two similar lines . Similarly, s2(x) is the series for 2-trees roote d
at a cell with all three lines similar . These two series are readily expressed
as functions of M 1 (x), M(x), and N(x) :

s1 (x) = M 1 (x)(1 + M(x) — x(1 + M(x 3 )), (3 .5 .14)

s2(x) = x(1 + M(x3 ) + N(x 3 )) . (3.5.15)

Making the appropriate substitutions, we obtain

(3 .5 .16)s1 (x)=x2 +2x 3 +2x4 +7x5 +••• ,

s2(x)=x+x4 + 2x'+6x1°+••• . (3.5.17)

In order to express the formula for t(x), the series for 2-trees, we use th e
Dissimilarity Characteristic Theorem (3 .5.1) in the same manner as was
done by Otter for the enumeration of trees .

Theorem (Enumeration Theorem for 2-trees) The counting series fo r
2-trees is

t(x) = L(x) + s 1(x) + 2s2(x) — 2Q(x).

	

(3 .5 .18 )

Substituting equations (3 .5.11), (3 .5 .13), (3 .5.16), and (3 .5.17) into equation
(3.5.18) gives

t(x)=x+x2 +2x3 +5x4 + 12x 5 +••• .

	

(3 .5 .19)

Note that this theorem can be used to count 2-trees with specifie d
properties provided that formulas for L(x), s 1 (x), and /Mx) are found fo r
2-trees with these properties .

By a triangulation of a polygon we mean a graph obtained from a regula r
n-gon by adding nonintersecting chords until every interior region is a
triangle. Obviously n — 3 chords are required and n — 2 triangles are
obtained. Generating functions for the number of different triangulation s
of the n-gon, i .e ., those not isomorphic as graphs, have been found by



3.5 TWO-TREES

	

77

Brown [B2], but our purpose here is to present an entirely different approac h
toward finding such a generating function . We alter the formulation of the
problem into a statement involving two-dimensional simplicial complexe s
by observing that triangulations of a polygon correspond precisely wit h
planar 2-trees. We then proceed to enumerate the latter by the same method s
used to count 2-trees .

To illustrate the configurations being counted, we show in Figure 3 .5.2
the unique triangulations of a triangle, a quadrilateral, and a pentagon, an d
the three different triangulations of a hexagon. Note that these graphs ar e
not taken as rooted or labeled in any way . Observe also the correspondence
between these and the planar 2-trees with one, two, three, and four cells .

The enumeration of planar 2-trees can be accomplished by using almos t
all of the formulas that have already been developed for 2-trees . Therefore
we alter the notation used for 2-trees only slightly by writing a bar to indicat e
the generating functions for planar 2-trees.

Thus let M 1(x) and N 1(x) be the series for planar 2-trees rooted at a
symmetric and an unsymmetric end-line respectively . Then the following
two formulas (compare (3 .5.3) and (3.5.4)) specify the relationship betwee n
M l (x) and N i (x) :

M 1 (x) = x(1 + M 1 (x2) + 2N 1 (x2)), (3 .5.20)

N 1 (x) = xZ(A 2 — S2 , 1 + M 1 (x) + 2N- 1(x)) . (3 .5.21)

These two equations can be used to obtain the coefficients in the tw o
series M 1 (x) and N 1 (x) . However, as noted in the enumeration of plane trees ,
a formula due to Euler (see Figure 3 .3.11 and equation (3.3.23)) shows that

<0
Figure 3.5 . 2

The triangulations of the n-gon, n = 3 to 6.
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the number of triangulations of an (n + 2)-gon which is rooted by orientin g
one of its boundary edges is

=
2(2n — 1)! = 1 2n

f
(n — 1) !(n + 1) !

	

n n — 1

	

(3.5.22)

Hence it follows tha t

M 1 (x) + 2N x =

	

2(2n — 1) !

	

"

	

1() 1 (n — 1)!(n + 1)! x '

	

(3 .5.23)

Now from Euler's formula (3 .5.22) and equation (3 .5.20) for M 1(x), we have

2(2n — 1)!

	

" + 1
M1(x)=x+"~1(n— 1)!(n— 1)!

x2 (3.5 .24)

The first few terms of M l (x) and N 1 (x) are

M 1 (x) = x + x 3 + 2x 5 + 5x' + 14x9 + • .

	

(3 .5.25)

N 1(x) = x2 + 2x3 + 7x4 + 20x5 + 66x6 + 212x7 + 715x8 + • • • . (3.5.26)

The series for planar 2-trees rooted at a line is denoted L(x) and can be
expressed in terms of M l (x) and N 1(x) :

L(x) = Z(S2 , 1 + M l(x) + N1 (x)) + Z(S2 , N1 (x)) — 1 .

	

(3 .5.27)

Substitution of (3 .5.25) and (3 .5.26) in equation (3 .5.27) for L(x) yields

L(x) = x + 2x2 + 4x3 + 12x4 + 34x 5 + 111x6 + 360x '

+ 1226x8 +

	

(3.5 .28)

From this point on, since the equations and procedures are virtually th e
same for planar 2-trees as for 2-trees, we will simply list the formulas fo r
,(x), . 1(x), .2 (x), and t(x) :

Q(x) = xZ(S3 , 1 + M 1(x) + 2N 1 (x)) — xN 1(x)(1 + M 1 (x2)

+ 2N 1 (x2)), (3 .5 .29)
.1 (x) = M 1 (x)(1 + M 1 (x)) — x(1 + M 1 (x3)), (3.5.30)

.2(x) = xN 1(x3) + x(1 + M 1 (x3)), (3.5.31 )

and as before

(3 .5 .32)1(x) = L(x) + s 1 (x) + 2.2 (x) — 2A(x),

which is obtained by barring equation (3 .5.18), the Enumeration Theore m
for 2-trees .
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TABLE 3 .5 . 1

PLANAR 2-TREES

n t n t„

1 1 13 24 834
2 1 14 83 898
3 1 15 285 357
4 3 16 1 046 609
5 4 17 3 412 420
6 12 18 11 944 61 4
7 27 19 42 080 170
8 82 20 149 197 15 2
9 228 21 532 883 768

10 733 22 1 905 930 975
11 2 282 23 6 861 221 666
12 7 528

Substituting the calculations (3 .5.25) and (3.5.26) for M 1 (x) and N 1 (x) in
these formulas gives the series t(x) for planar 2-trees . In an unpublished work ,
R. K. Guy (to wile away his time in Singapore) used pencil, paper, and a
desk calculator to obtain the first 23 coefficients of t(x) shown in Table 3 .5.1 .

EXERCISES

3.1 The partition of a tree is the sequence of nonnegative integers
(al , a2 , a3 , . . .) where am is the number of points of degree m. Trees with a
given partition .

	

(Harary and Prins [HP14])

3.2 The diameter of a tree is the length of a longest path . Trees with a given
diameter .

	

(Harary and Prins [HP14] )

3.3 A weighted tree is a tree to each of whose points is assigned a positiv e
integer called its weight . The weight of a tree is the sum of the weights of it s
points. Trees with p points and weight m .

	

(Harary and Prins [HP14])

3.4 A signed tree is one in which each line is assigned a plus or minus sign .
Signed trees .

	

(Harary and Prins [HP14])

3.5 A tree has strength s if at least one pair of points is jointed by s lines ,
but no two points are joined by more than s lines . Trees of strength < s.

(Harary and Prins [HP14] )

3 .6 (a) Connected, (b) unilateral, (c) strong functional digraphs .
(Harary [H10])
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3 .7 Cacti in which every block is a quadrilateral .
(Harary and Uhlenbeck [HU1] )

3.8 Triangulations of a polygon with n interior points .

	

(Brown [B2] )

3.9 Trees with a given number of endpoints .

3.10 The generating function U(x) for rooted identity trees satisfies

U(x) = x
U

(1 + x n ) un .
n = 1

3.11 Trees whose points are all of degree 1 or 4 (the saturated hydrocarbons) .
(Polya [P7] )

3.12 A rooted tree has height k if k is the distance from the root to a farthes t
point. Rooted trees with given height .

	

(Riordan [R16])

3.13 Rooted plane trees :

1

	

q\ i 2d
2q li ° d d

3.14 Forests with q lines and no isolated points .

(Walkup [WI])



Beauty is truth, truth beauty—that is all

Ye know on earth, and all ye need to know .

Keats, On a Grecian Urn

Chapter 4 GRAPHS

A solution to the fascinating problem of determining the number o f
graphs of order p was apparently first published in 1927 . The author of the
remarkable paper [RIO] which contained this intriguing result was J . H.
Redfield .t This pioneering paper went virtually unnoticed for about thirt y
years, but in the meantime the problem was tackled successfully an d
independently by several mathematicians including R . L. Davis [D1] ,
A. M. Gleason, S. Golomb, D. Slepian, and of course, G . Polya. As early as

t A letter dated 19 Dec. 1963 from C. Oakley to F. Harary reads in full :

Howard Redfield was a graduate of Haverford College in the Class of 1899 . He was a ma n
of very broad interests and we do not have a continuous record of his doings . Directly
after leaving college, he worked as a civil engineer . In college he took a lot of languages an d
mathematics . . (There was no major department in those days.) After graduating fro m
Haverford with a B .S. degree, he took a S.B. degree in M.I .T . and a M.A. and Ph.D. (mathe-
matics) aL Harvard. During the year 1907—1908, he studied romance philology at the Univer -
sity of Paris. In 1908—1909, he was an instructor in mathematics at Worcester Polytechni c
Institute, Worcester, Massachusetts. In 1910—1911 he taught French at Swarthmore College

81
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1937 when his enumeration theorem appeared, Polya was able to apply i t
to the problem of determining the generating functions that counted graph s
according to the number of points and lines present. A letter from G . Polya
to F. Harary in 1951 contained formula (4 .1 .9) below with 1 + x substitute d
in it and illustrated it for p = 4 . But it was not until the appearance of the
paper [H4] in 1955 that the details were published .

We have already seen in Chapter 3 how Polya's theorem can be applied
to counting problems involving trees and treelike structures . This chapter
presents further evidence of the wide applicability of his method . We shall
enumerate graphs, rooted graphs, connected graphs, bicolored graphs ,
locally restricted graphs, symmetric graphs, boolean functions, and euleria n
graphs .

4.1 GRAPHS

Polya's efficient method for counting graphs requires the construction o f
a permutation group whose orbits correspond precisely to isomorphis m
classes of labeled graphs with p points and q lines . On deriving an explici t
formula for the appropriate cycle index, an application of PET with figure
counting series 1 + x determines the counting polynomial which has as the
coefficient of xq, the number of (p, q) graphs .

More specifically, let
m

g,(x)

	

E gP,gxq
q=0

(4 .1 .1 )

and from 1912—1914 he was an assistant professor of romance languages at Princeton
University. From 1916 onward until his death in 1944, he was a practicing civil engineer i n
Wayne, Pennsylvania .

I knew him from about 1938—1944. Indeed in 1940 he came to Haverford College and
gave us some lectures on "Electronic Digital Computers" (this was slightly before Eckert —
Mauchly) . Knowing him as I did in those later years, I could well understand how he woul d
not make a great teacher . He was completely off in the clouds at all times . He never looke d
at you, he spoke softly with his eyes on the floor, he worked with his back to you and wrot e
on the board. His board work, however, was impeccable . It could have been photographe d
and printed by photo offset it was so perfect .

He came to Haverford to talk to our math club many times and always had somethin g
new to say. He was so modest that you never knew whether what he was doing was his ow n
or somebody else's .

This is about all I know of him except for the fact that he has a very distinguishe d
brother (Alfred Redfield) at Woods Hole, Massachusetts .
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where m = (2) and gp,q is the number of (p, q) graphs . For example, a glanc e
at Figure 1 .1 .2 confirms that

g4(x) = 1+x+2x2 +3x3 +2x 4 +x 5 + x6 .

	

(4 .1 .2)

Note that the coefficients of these polynomials are always "end-symmetric "
since the number of (p, q) graphs equals the number of (p, m — q) graphs by
complementation .

Since PET enumerates orbits of functions, we shall first provide a natura l
correspondence between graphs and functions . Let X = { 1, . . . , p}}, while
x(2 ) denotes all 2-subsets of X. Then with Y = {0, 11, the functions from x ,2 )
into Y represent labeled graphs of order p. Each function f corresponds to
that graph G(f) with point set X in which i and j are adjacent if and only i f
f {i, j} = 1 . Thus two functions f and h represent the same graph if there is a
permutation a of X such that whenever i and j are adjacent in G(f ), then
ai and aj are adjacent in G(h) . Therefore G(f) and G(h) are isomorphic if
and only if for some permutation a acting on X,

	

f {i, j} = h{ai, aj}

	

(4 .1 .3 )

for all {i, j} in x(2 ) . This equation suggests the following unary operation o n
permutation groups which leads to the group required for the enumeratio n
of graphs .

Let A be a permutation group with object set X = {1, 2, . . ., p} . The
pair group of A, denoted A (2) , is the permutation group induced by A which
acts on X(2). Specifically, each permutation a in A induces a permutatio n
a' in A(e) such that for every element {i, j} in X(2) ,

	

= {ai, aj} .

	

(4 .1 .4)

Thus the degree of A (2) is (z) and A = A(2) unless A = S2 . To clarify thi s
definition we introduce the line-group of a graph, a concept which will als o
be rather useful later . Let G be a graph with point set V(G) and line set X(G) .
Each permutation a in F(G) induces a permutation a' acting on X(G) in the
following way. If u and v are adjacent in G so that {u, v} is a line of G, then

	

a'{u, v} _ {au, av} .

	

(4 .1 .5 )

This collection of permutations of X(G) constitutes a group, denoted F 1 (G),
called the line-group of G. For example, the line-group of the complete
graph of order p and the pair group of the symmetric group of degree p ar e
identical,

F 1 (Kp) = S(j,2 ) .

	

(4 .1 .6)



84

	

4 GRAPHS

Now by (4 .1 .3) and (4.1 .4), two functions f and h represent the sam e
graph if and only if there is a permutation a of X such that for all z in X(2 )

f(z) = h(a'z) .

	

(4 .1 .7)

But this condition is precisely the requirement that .f and h are in the same
orbit of the power group E2D' . Consequently the orbits of this power grou p
correspond to the different unlabeled graphs of order p, that is, the isomorph-
ism classes of labeled graphs . On applying PET to count these orbits b y
weight, Polya's formula for counting graphs takes the following form .

Theorem The polynomial gp(x) which enumerates graphs of order p b y
number of lines is given by

gp(x) = Z(S,),1 + x),

	

(4 .1 .8)

where

1

	

)

	

p

	

J2k+ 1

	

(

	

k- 1 ~)2k

	

(zk )

	

(r> t ))JrJ tZ(S
p2)) = p'

	

l l k
	 Jkk'

	

S2k+ 1

	

SkS2k J S k

	

S[r,t

	

(4 .1 .9 )

Proof Define the weight function w on Y = {0, 1} by setting w(0) = 0 an d
w(1) = 1 . Then the weight of a function from X (2) to Yand the weight of the
orbit to which it belongs are defined in the usual way, as in (2.4.4). Thus the
weight of an orbit of E p) is simply the number of lines in the correspondin g
graph. Then (4.1 .8) follows from PET .

Now we shall derive formula (4 .1 .9) for Z(S(p2) ) but we illustrate first wit h
p = 4. In the cycle inde x

Z (S4) = 2-4(si + 6s; s2 + 8s, s3 + 3s2 + 6s4 )

	

(4 .1 .10)

each term can be represented by one of its contributing permutations as i n
Table 4 .4 .1 .

Each of the five types of permutations in S 4 induces a permutation in the
pair group S (42) . The next table shows the terms in Z(S (42)) induced by each
term of Z(S 4 ) .

One of these terms is now illustrated . In Figure 4.1 .1, the 2-subsets are
indicated for brevity by juxtaposition : 11, 2} = 12, and so on. Collecting
terms, we find that

Z(S(42) ) = 24si + 9s 2is3 + 8s3 + 6s2s4 ) .

	

(4 .1 .11 )

On substituting 1 + x in this cycle index, one has as in (4 .1 .2) ,

Z((42),1+x)=g4(x)= 1 +x+2x 2 +3x 3 +2x4 +x 5 +x6. (4.1 .12)
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TABLE 4.1 . 1

Term of Z(S 4 )

	

Permutation of S4

	

Diagram of this permutation

(1)(2)(3)(4 )

2
S I S 2 ( 1 )(2 )(34)

s l s 3 (1)(234)

9 O
1

	

2

0 0
4

	

3

0 0
1

	

2

(12) (34 )2Sz

s 4

	

(1234)
2

4 3

TABLE 4 .1 . 2

Term of Z(S 4 )

	

Induced term of Z(S4')

S4 6I S i
2 2 2S I S 2 S I

S
2
2S I S 3 S 3

2 2 2
S 2 S I S2

S 4 S 2 S 4
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00

	

'd014 024
2

	

1 2

4CC>3 34

	

13

	

2 3

Figure 4 .1 . 1

The permutation (1)(2)(34) and its induced permutation in S .

We indicate the correspondence between terms of the cycle indexes o f
S,, and S(; ) for p = 4 by writin g

4

	

6

	

2

	

2 2S 1 -4 S 1 ,

	

S 1 S2 -+ S 1 S 2 ,

and so on . To obtain an expression for Z(S(p2)), we must find the missin g
right-hand member of

s2 . . . sP --* ?

	

(4 .1 .13)

Leta be a permutation in S, whose contribution to Z(S p) is flsk k . There
are two separate contributions made by a' to the corresponding term i n
Z(Sp )). The first comes from pairs of elements of X = 11, . . . , p}, both in a
common cycle of a ; the second, from pairs of elements of X, one in each o f
two different cycles of a .

We now determine the first of these contributions . Let zk = (12 . . . k) be
a cycle of length kin a. Figure 4 .1 .2 shows the permutation in the pair grou p
induced by Zk for k = 2 through 6. Observe that if k is odd, Zk induces
(k — 1)/2 cycles of the same length ,

Sk -> Skk-1)/2

On the other hand, when k is even, we find

Sk --a Sk/2 S
k
k-2)/2

Thus since there are jk cycles of length k in a, the pairs of elements lying in
common cycles contribute

Si" -* Skk(k - 1)1 2

for k odd and

(4.1 .14)

s,k -> (sk/2 s(kk-2)12 )jk

	

(4 .1 .15)

for k even.
To calculate the second contribution, consider two cycles z,. and z 1 in a .

As usual, let [r, t] and (r, t) denote the l .c.m. and g .c .d. respectively. Then
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0
1 2

12\/23

3 1

12

	

23

41

	

34

1 3

0
244

	

3

12 1 3

45

	

46

1 4

Figure 4.1 .2

Cycles in Sp and the induced permutation in S(,P .

the cycles z r and zt induce on the pairs of elements, one from each cycle ,
exactly (r, t) cycles of length [r, t] . In particular when r = t = k, they con-
tribute k cycles of length k. Thus when r t, we have

srrs~t

	

(4 .1 .16)

and when r = t = k,

skk --* sr).

	

(4.1 .17)

Now on multiplying the right sides of (4 .1 .14)-(4 .1 .17) over all applicabl e
cases, the missing right-hand member of (4 .1.13) is obtained and (4.1 .9) is
verified .

	

If

Formulas (4.1 .8) and (4.1 .9) have been used (see Riordan [R15, p . 146])
to determine the polynomials gp(x) for p < 9. The coefficients for p < 1 0
are given in Appendix I . The cycle indexes Z(S(p2)) with p ~ 10 are also in
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Figure 4 .1 .3 .

The six multigraphs of order 4 with three lines .

Appendix I and we shall see that they play an important role in the enumera-
tion of several kinds of graphs .

In a multigraph more than one line can join two points (see Figure 4 .1 .3) .
Let mp(x) be the generating function for multigraphs so that the coefficient o f
x9 is the number of multigraphs with p points and q lines . The following
theorem of [H4] was obtained by modifying the figure counting series fo r
graphs .

Theorem The generating function mp(x) for multigraphs of order p is
given by

mp(x) = Z(S (p2) , 1/(1 — x)) .

	

(4 .1 .18)

With p = 4, we find

m4(x) = 1 + x + 3x 2 + 6x3 + 11x4 + 18x 5 + 32x6

+ 48x' + 75x8 + 111x 9 + 160xio••

	

(4 .1 .19)

The coefficient of x 3 is verified by Figure 4.1 .3 .
We can now describe the enumeration of locally restricted graphs

following Parthasarathy [P7] and [HP3] . Essentially this amounts to a
further refinement of the cycle index of the pair group of S p . The partition
of a graph is the sequence of degrees of its points, usually written in descending
order. A locally restricted graph is a graph with a given partition . The generat-
ing function that enumerates locally restricted graphs with p points is a
polynomial N(x,, x 2 , . . . , xp) such that each term, xi'x22 . . . xp" satisfies

ei>e2> . . .>ep .

The coefficient of such a term is the number of graphs with partitio n
e l , e 2 , . . . , ep . For example, the term in N(x l , . . . , x5) that corresponds t o
the graph in Figure 4 .1 .4 is x4x2x3x4x5 since its degree sequence is 4, 3, 3, 2, 2 .
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Figure 4 .1 . 4

A graph with degree sequence 4, 3, 3, 2, 2 .

In obtaining a formula for the generating function, we use the natura l
setting provided by the power group as applied to this situation. With
Y = {0, 1} as above, consider the function W from Y X`2j into the ring o f
polynomials in the variables x ; defined by

W(f) =

	

(x~x~)f({~,~))

	

(4 .1 .20)
{i,j} e X (2 >

Then in the graph of f, the degree of the point i is given by the exponent o f
x i in W(f) . It is convenient to define the linear operator 0 acting on W(f)
by specifying that for any monomial in the x i , 0 reorders the exponents i n
nonincreasing order while stating the variables in increasing order . For
example,

0(x3xix2x 4) = xlx2x3x 4 .

An application of the weighted version of Burnside's Lemma (2.3.10)
gives the following result, which was obtained by Parthasarathy in somewha t
different form .

Theorem The generating function that enumerates locally restricte d
graphs is

N(x 1 ,

	

, . . . , x )p ) = 1 1 0 E W(f) ,

	

(4 .1 .21)
P'

	

s(2)

	

f = YfyeE2 n

where

(r,$ )
W(f) = fl 1 + f xs/(r,$)

	

x rl(r,$ )
i

f = Y .f

	

Zr,Zs

	

LEZr

	

JEZ S

(r— 2)/2

1+ [Ixi 1+ flx?
Z r

	

IEZr

	

IEZ r
reven

x 1-1 (1+flx?
Zr

	

i
rodd

	

eZr

x

(4.1 .22)
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in which the first product is over all distinct pairs of cycles r, s in a and th e
others are over all cycles of the permutation in Sp which corresponds to T .

Now by applying this theorem, we hav e

N(x 1, x2,x3) .= (1/3!){9(1 + xlx2)(1 + x2x3)(l + x i x3)

+ 30(1 + x i x2x3)(1 + x1x2) + 20(1 + xix x3)}

= (1/3!){(1 + 3x 1 x2 + 3xix 2 x3 + x4x2x3)

+ 3(1 + x 1 x2 + xiX2x 3 + xix?x3) + 2(1 + xix2x3) }

= 1 + x 1 x2 + xix2x3 + xix2x3 .

One must realize that this method only gives a formal solution and does not
conveniently yield exact numbers or orders of magnitude .

4.2 CONNECTED GRAPHS

As in the case of labeled graphs, we shall see that the generating function s
for graphs and connected graphs are closely related by the exponentia l
function. Furthermore, connected graphs with specified properties can ofte n
be enumerated in a similar manner in terms of the total number of suc h
graphs .

Let g(x) be the generating function for graphs so that

g(x) = E gpxp,
p=1

(4.2 .1 )

where gp is the number of graphs of order p, and let c(x) be the correspondin g
generating function for connected graphs ,

c(x) = p cpxp .
p=1

(4 2.2_ )

The theorem of Riddell [R14] which relates these two power series can now
be stated .

Theorem The generating functions g(x) and c(x) for graphs and connecte d
graphs satisfy

1 + g(x) = exp E c(xk)/k .

	

(4.2 .3 )
k=1
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Proof It follows from PET that Z(S,,, c(x)) counts graphs with exactly n

components . Hence on summing this series over n ,

	

1 + g(x) = Z(S,,,, c(x)) .

	

(4 .2.4)

Then (4 .2 .3) follows from (4 .2.4) and the identity (3.1 .1) .

	

/ /

Implicit in (4 .2 .3) is an effective method developed by Cadogan [Cl] fo r
computing the number of connected graphs of order p . First we set

apxp = log(1 + g(x)).

	

(4 .2.5)
p =

Then from (1 .2.8), it follows that
p— 1

pap = Pgp —

	

kakg p—k

	

(4.2.6)

k= 1

It is from this equation and the values of gp that the integers pap are firs t
calculated in Table 4 .2.1 for p < 9. Using them, we next see how the value s
of cp are obtained .

TABLE 4.2. 1

THE NUMBER OF CONNECTED GRAPH S

p Sp pap

	

c p

1 1 1 1
2 2 3 1
3 4 7 2

4 11 27 6
5 34 106 2 1
6 156 681 11 2

7 1 044 5 972 853
8 12 346 88 963

	

11 11 7
9 274 668 2 349 727

	

261 080

Since

apxp =

	

c(x k)/k .
p=1

	

k= 1

it follows by equating coefficients that

pap = dcd .

(4.2.7 )

(4.2.8)

d i p
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On inverting (4 .2.8) using the mobius function µ(d), the numbers can be
expressed in terms of the ap ,

p(d)
CP =

	

d ap/d .
dip

(4.2.9)

This formula of Cadogan was used to calculate the values of cp in Table 4 .2 . 1
with p < 9 . Whenever any two generating functions satisfy the relatio n
(4.2.3) of the theorem, the coefficients are related by (4 .2.6) and (4 .2.9). It is
often the case that the generating functions for graphs with a specifie d
property and for such connected graphs satisfy (4 .2.3). Hence the connecte d
graphs under consideration can be enumerated using (4 .2 .6) and (4.2.9) . For
example, if w(x) is the generating function for the even graphs defined in
Chapter 1 and u(x) counts connected, even graphs, then

1 + w(x) = exp E u(xk)/k .

	

(4.2.10)
k= 1

Hence the coefficients of u(x) can be computed from those of w(x) by means
of the relations corresponding to (4.2.6) and (4.2.9). The connected, eve n
graphs are precisely the eulerian graphs, and we shall provide the details o f
the computations involved in the last section of this chapter .

Cadogan [Cl] extended his method to include lines as well as points a s
an enumeration parameter. We now sketch the details of this process . Let
gp,q and cp,q be the number of (p, q) graphs and connected graphs respectively .
and set

g(x, y) _ E gp,gxPyq

	

(4.2.11 )

c(x, y) =

	

cp,gxPyq•

	

(4.2.12)

Then it follows from the two variable version of PET tha t

1 + g(x, y) = exp E c(xk , yk)/k .
k= 1

For each p > 1, let bp(y) be the polynomial in y defined by

oo

E bp(y)xP = log(1 + g(x, y)) .
p= 1

Then it can be shown as in (4 .2.6) that
p— 1

pbp(y) = pgp(y) — E kbk(y)gp-k(y) •
k=1

(4.2.13)

(4 .2.14 )

(4 .2.15)
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The coefficients of the bp(y) can be computed from the coefficients of th e
gp(y) using (4 .2.15). For convenience, we set

b p(y ) = E bp,gyq .

	

(4.2.16)

We also have

bp(y)xp = E c( xk , yk )/k,

	

(4.2.17)
k= 1

and on equating coefficients of xpyq and using mobius inversion we have

cp ,q

	

E by / r,girµ(r)/r .

	

(4.2.18)
rI (p ,q)

The values of cp,q in Table 4.2.2 were computed by Cadogan using (4.2.18) .
Clearly this approach also can be used to determine the number of

connected (p, q) graphs with specified properties .

TABLE 4 .2. 2

THE NUMBER OF CONNECTED (p, q) GRAPHS

\ 0
P

1 2 3 4 5 6 7 8 9 10 11 12 1 3

1

	

1
2 1
3 1 1
4 2 2 1 1
5 3 5 5 4 2 1 1
6 6 13 19 22 20 14 9 5 2
7 11 33 67 107 132 138 126 9 5
8 23 89 236 486 814 1 169 1 454

4.3 BICOLORED GRAPHS

We have seen in Chapter 1 that the points of a k-colored graph hav e
been partitioned into k sets so that adjacent points are always in differen t
sets. The points of each set are then considered to have the same color .
In this section we concentrate on bicolored graphs for which k = 2.

Substituting (4.1 .6) into (4 .1 .8), we hav e

gp(x) = Z(r 1(Kp), 1 + x) .

	

(4 .3 .1 )
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It is now fruitful to generalize this equation by replacing K p by an arbitrary
graph G of order p, as in [H11] . It follows from Corollary (2 .5 .1) of the PET,
which interprets Z(A, 1 + x), that Z(F 1(G), 1 + x) enumerates F 1 (G)-
equivalence classes of sets of lines of G. These equivalence classes correspond
precisely to spanning subgraphs of G, two of which are in the same clas s
whenever there is an automorphism of G that sends one to the other . If two
subgraphs are not in the same class, they are called dissimilar .

Theorem The number of dissimilar spanning subgraphs of G with q lines
is the coefficient of x4 in Z(F1 (G), 1 + x).

	

(4 .3 .2 )

To illustrate we shall consider the (4, 5) graph G shown in Figure 4 .3.1 .
Routine calculation shows tha t

Z(F 1(G)) = 4si + 3s 1 s2),

	

(4 .3 .3)

and hence

Z(F 1(G), 1 + x) = 1 + 2x + 4x 2 + 4x 3 + 2x4 + x 5 .

	

(4.3.4)

These coefficients are illustrated in the next figure . We have used dashed line s
to indicate the missing lines, to emphasize the equivalence with respect t o
the group of G . Note that (4 .3.4) also gives the number of 2-colorings of th e
lines G (solid and dashed colors) . We shall find this interpretation o f
Z(I' 1(G), 1 + x) very useful, particularly in counting bicolored graphs ,
which follows next .
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Figure 4.3 . 1

The spanning subgraphs ofa random graph .
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The complete bipartite graph Km,n has m + n points of which m have one
color and n have the other color with two points adjacent if and only if the y
have different colors . Since bicolored graphs with m points of one color an d
n of the other correspond precisely to spanning subgraphs of Kn, ,n , it follows
immediately from the Theorem (4 .3.2) that the polynomial b,,, ,n(x) which
counts these bicolored graphs satisfie s

bm,n(x ) = Z(FI(Km,n), 1 + x).

	

(4.3 .5 )

For example,

b 3,2(x) = 1 + x + 3x 2 + 3x3 + 3x4 + x 5 + x6 ,

	

(4.3.6)

and the next figure verifies these coefficients . Note that the coefficients o f
these polynomials are always end-symmetric .

We now determine the cycle index of the line-group of Km,n , following
[H7] . It is much simpler to handle first the case m ~ n. Suppose X is the se t
of m points of one color in Km,n and Y is the set of n points of the other color .
Then the ordered pairs (x, y) in the cartesian product X x Y correspon d
precisely to the lines of Km n . Thus the permutations in F I (Km,n ) consist of
permutations of the pairs (x, y) induced by permutations of X and of Y.
This suggests the following binary operation on permutation groups . Let
A and B be permutation groups with object sets X and Y respectively. The
cartesian product of A and B, denoted A x B, is a permutation group with
object set X x Y. Its permutations consist of all ordered pairs (a, /3) o f
permutations a in A and /3 in B . The image of each element (x, y) of X x Y
determined by (a, /3) is

•
0

0

	

0

(a, Q)(x , Y) = (ax, fY) •

:<.

(4.3.7)

•

	

•
Figure 4 .3 .2

The bicolored graphs with threepoints of one color and two of the other color .
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Therefore for m n,

r I(Km,n) = Sm x S n ,

	

(4 .3.8)

and we have the theorem of [H7] which counts these bicolored graphs b y
substituting (4.3 .8) into (4 .3.5) .

Theorem The polynomial bm,n(x) that enumerates bicolored graphs wit h
m ~ n is given by

bm,n(x) = Z(Sm x Sn , 1 + x)

	

(4 .3 .9 )

where

1

	

m,
n

Z(Sm x s,,) =
m! n!

	

s~r,i~~rca~~~ca>

	

(4 .3.10). («,Q)►,t= 1

Actually, we have already calculated the cycle index of Sm x Sn within
the formula (4 .1 .9) for Z(Sp )) . In particular, (4 .1 .16) gives precisely the ter m
under the sum and product signs in (4 .3.10) .

To illustrate the theorem, we shall use formulas (4 .3.9) and (4.3 .10) to
derive b3,2 (x) already given in (4.3 .6). First we shall find from (4.3.10) the
cycle index of the cartesian product S 3 X S2 . There are twelve permutation s
in this group, but the cycle structure of any one of them, say (a, /3), depend s
only on the cycle structures of a and /3. The cycle structures of these individual
permutations are obtained from formula (2 .2.5) which expresses Z(S,,) i n
terms of partitions of n . There are only three partitions of 3 and two of 2 ;
so we have just six different kinds of pairs of permutations to consider .
For example, if the permutation cc in S 3 contributes the monomial s 1 s2 to
Z(S3 ) and /3 in S2 is the transposition, then it follows from (4 .3.10) that (cc, (3)
contributes s2 to Z(S 3 x S2 ) . Since there are three permutations with th e
same cycle structure as a, their total contribution to Z(S 3 x S2) when paire d
with /3 is 3s2. Table 4.3.1 contains the contributions for all pairs in S 2 X S3 .

TABLE 4.3 . 1

THE TERMS OF Z(S 3 X S 2 )

Permutation

	

a

	

Q

	

(a, /3)

3 2 6Cycle index term S 1 S 1 S t
2 2 0 2

S I S2 s l
2

s ls 2
2

S3 S 1 S 3
3 3

S 1 S2 S2
3S 1 S2 S2 S2

S 3 S2 S6
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Hence the cycle index formula i s

Z(S3 x S2 ) = 111(4 + 3sis2 + 2s3 + 4s2 + 2s 6 ) .

	

(4 .3 .11 )

On substituting 1 + x k for s k in (4 .3 .11) ; the polynomial b 3,2(x) of (4 .3.6)
is obtained .

We now turn to the enumeration of bicolored graphs for the mor e
subtle case m = n . The corresponding counting polynomial is denoted b y
b n(x) instead of bn,n(x) . For example, it is not hard to verify that

b 3(x) = 1 + x + 2x 2 + 4x3 + 5x4 + 5x5 + 4x 6 + 2x' +x8 + x9 . (4.3.12)

Figure 4.3 .3 verifies that the coefficient of x4, and hence that of x 5 , is 5 .
Note well that we do not obtain additional isomorphism classes of thes e
bigraphs by interchanging the colors .

As before we must find a formula for the cycle index of the line-group of
K,, ,n . For this purpose it is convenient to define additional operations o n
permutation groups.

Let A and B be permutation groups with object sets X = {x 1 , . . . , xd }
and Y = { y 1 , . . . , ye } . The composition of A with B is denoted by A[B] and
has X x Y as its object set . It was defined by Polya [P8] and others and i s
sometimes called the "wreath product." For each permutation a in A and
each sequence /3 k , . , /3d of d permutations in B, there is a permutation in
A[B], denoted [a ; fl, , . . . , /3d ], such that for every ordered pair (xi , yi) in
XxY,

[a ; /3 1, . . . , /3d] (x i , y;) = (axi, fly) .

	

(4 .3 .13)

The reason for calling this group the composition of A and B is that its
cycle index is the composition of Z(A) with Z(B) in the manner illustrated
by the following example . Take A = C3 and B = S2 . Using different letters
for the variables in Z(A) and Z(B), we hav e

Z(A) = 4(si~+~2s3),

	

Z(B) =~2(ti + t2)

Z(A [B]) = 3([21t 1 + t2)]3 + 2[21t3 + t6)]) .

The sense in which the cycle index of the composition of two groups is th e
composition of their cycle indexes should now be apparent . Polya proved

Figure 4 .3. 3

The five (6,4) bicolored graphs with three points of each color .
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that Z(A[B]) is that polynomial obtained from Z(A) by replacing each
variable S k by Z(B ; Sk, S2k, S3k, . . .) . Thus Z(B) has been substituted into th e
cycle index of A to obtain the cycle index of their composition . We often
denote this substitution by

Z(A[B]) = Z(A) [Z(B)] .

	

(4.3.14)

Furthermore, for any two permutation groups A and B and for any power
series f(x), we have

Z(A[B], f (x)) = Z(A, Z(B, f (x))) .

	

(4.3.15)

The most typical example of the composition of two permutation group s
is obtained from the graph that consists of m disjoint copies of K,, . Its group
is identically Sm[Sn] . As noted in (2 .1 .1), a graph G and its complement G
have the same group . Hence to recognize the group of K,, ,n , we use the fact
that its complement consists of two copies of K n and get

F(Kn,n) = S 2 [Sn ] .

	

(4 .3 .16 )

Since F' 1 (Kn,n) is induced by F(K,, ,n) we can now use (4 .3.16) to determin e
Z(F1(Kn,n)). The permutations in F(K,, ,n ) that fix the two n-sets of differen t
colors correspond to the terms in Z(S 2 [Sn]) obtained by substituting Z(S,, )
for s 1 in Z(S2 ) . Their contribution to Z(F 1 (Kn,n)) is precisely Z(S,, x S n ).
The permutations in F(K,, ,n ) which interchange the two n-sets contribute
Z(Sn ; s2 , s4 , s6 , . . .) to Z(F'(Kn,n)) . Thus they consist of cycles of even lengt h
which always permute a point of one color to a point of the other color .
Their contribution to Z(F 1 (Kn,n)) is shown in [H7] to b e

Zn = 1 E	 nk .

	

S, ~ s2(
k

k ) +Ik/2lJk

	

S2r~r,t]

	

(4.3.17)
n i. (j) ~k Jk k odd

	

k

	

r < t

This formula can be verified by considering cycles of points with alternat-
ing colors and by observing how these cycles permute all the lines whic h
join points of different colors .

We have now found tha t

Z(F1 (Kn .n)) = (Z(S,, x Sn) +

	

(4.3.18)

and can write a formula for this cycle index using (4 .3 .10) and (4.3.17) .
However, there is another useful operation on permutation groups [H9].
a special case of which provides a group identical to F' 1 (Kn,n ) . Let A and B

be permutation groups with object sets X = {x 1 , x 2 , . . . , x d } and Y =

{y i , y2, . . . , ye} as above, but now we insist that e > 1 . The exponentiatio n

[B]A of A with B is that permutation group with object set Yx whose per-
mutations are constructed as follows . Each permutation a in A and each
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sequence fi t , . . . ,13a of permutations in B determine just one permutation

( ; f3 1 , . . . , fa) in [B]A , which takes the function f into the function f*

defined for all x i e X by

	

.f *(x ; ) = f3 ; f(ax 1 ) .

	

(4.3 .19 )

I t can easily be shown that the distinct selections of a, /3 1 , . . . /3a lead to
distinct permutations of Yx and that these permutations form a group .
Furthermore, when we take A = S2 and B = S,,, the functions YK correspond
precisely to the lines of

	

and in fac t

	

F 1(Kn,,,) = [Sn]s2 .

	

(4 .3.20)

Then the counting theorem of [H7] takes the following form .

Theorem The polynomial bn(x) that enumerates bicolored graphs with
n points of each color is given b y

b n(x) = Z([S„] s2 , 1 + x) (4.3.21 )

where

Z([Sn]s2) = 2(Z(S n x Sn ) + Z„). (4.3.22)

As mentioned above, this theorem counts bigraphs with n points of eac h
color in which the colors are interchangeable . The simpler case, with fixed
colors, was already handled in (4.3.9) by taking m = n, even though the
theorem says not to .

We now illustrate the theorem by providing the formulas required t o
determine b 3(x) . The cycle index of S 3 X S3 is obtained by applying (4.3.10)
to get

Z(S3 x S3) = Ms? + 6sis2 + 8s3 + 9s 1 sZ + 12s 3 s6 ). (4.3 .23)

From formula (4.3 .17) it follows that

Z'3 = 6(sls3 + 3s 1 s4 + 2s3s6 ) .

	

(4.3.24)

Combining these we have

Z([S 3 ] s2) = .Ass? + 124s2 + 8s3 + 9s 1 s2 + 18s 1 sq + 24s 3 s6 ). (4.3.25)

Now on substituting 1 + xk for sk in this expression, formula (4 .3.12) for
b3(x) is obtained .

A bicolorable graph is one which can be bicolored. We only indicate how
such graphs have been counted . As observed in [HP 15], the number o f



loo

	

4 GRAPH S

connected bicolored graphs of order p equals the number of connected
bicolorable graphs of order p . Having enumerated bicolored graphs, we ca n
count the connected ones using the method of (4 .2.3), thus determining the
number of connected bicolorable graphs as well .

4.4 ROOTED GRAPH S

Rooted labeled graphs were counted effortlessly within the proof o f
(1 .2.1). The enumeration of rooted (unlabeled) graphs is a bit less obviou s
[H4]. It involves the formation of a pair group slightly altered from that o f
the symmetric group . This modification generalizes readily to graphs roote d
at an arbitrary induced subgraph [HP1], which may be a graph, digraph, o r
multigraph .

There is just one theorem in this section, namely, a formula for countin g
graphs G of order p rooted at a specified induced subgraph H, where G has
q lines in addition to those of H. As illustrative corollaries, we will give
formulas for rooted graphs, line-rooted graphs, triangle-rooted graphs ,
graphs rooted at an oriented line, and graphs rooted at a cyclic triple . For
example, all the (6, 5) graphs rooted at a triangle H = K3 are displayed in
the next figure where dashed lines are used for the triangle . Thus by the
above convention, p = 6 and q = 2 since there are two additional lines .

For any set S of points of the graph G, the induced subgraph <S> is the
maximal subgraph of G with point set S . Thus <S> contains all lines of G
joining two points in S . We seek to determine the number of graphs G o f
order p rooted at an induced subgraph H of order n < p. This means tha t
no line of G joins two nonadjacent points of H.

We shall denote the permutation group required for the application o f
PET via (2 .5.1) by F'(H) o Sp _ n , defined as follows : We set G = H v Kp _ „
and observe that the product F(H)S_ n is the subgroup of F(G) which fixes
H. We require the restriction of the pair group (F(H)Sp_n)(2) to those un-
ordered pairs {u, v} of points of G not both in H. The resulting permutatio n
group is designated by F(H) o Sp _ n .

If the contribution of a permutation to Z(S p) is flskk, then the correspond-
ing contribution to Z(Sp )) is denoted by (fls%k)(2) . Now that the necessary
symbols are defined, the general result [HP1] can be stated .

Theorem The counting polynomial h p(x) that enumerates graphs of orde r
p rooted at an induced subgraph H of order n < p is

h p(x) = Z(F(H)o S p _ n , 1 + x)

	

(4 .4 .1)
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where

1

	

n,pp— n
Z(F(H ) ° Spn) =

	

V

	

(
11

4
r,t )Jr(

a)Jt(P)(]Skk(0))( 2 )
F(H)I (p — n) ! ( a ,Q) r,t = 1

	

v

	

1

and the sum is over all pairs with a in I'(H) and /3 in S,,_, .

Proof The permutations in I'(H) o S_ n are induced by the pairs (a, /3) o f
permutations with a in '(H) and /3 in Sp _ n . The contribution to Z(F(H) o Sp _n )
of any pair can be considered as a product of two terms . In the first term we
just observe that (a, /3) induces a permutation on the lines between H and
Kp _ n exactly as in the cartesian product (4.3.10). The second term i s
(flskk(a))(2) which describes the structure of the permutation /3 induces on
the pairs of points in K p _ n .

	

//

We can now squeeze some corollaries out of the theorem by choosin g
special kinds of subgroups for H. For our first application, we consider
graphs of order p rooted at a point. Thus H = K 1 so I'(H) = S 1 , and clearly
F(H) o Sp _ n = (S 1 Sp_ 0(2 ) . Substituting into (4.4.1), we get the generatin g
function Gp(x) for rooted graphs

Gp(x) = Z((S1Sp-1)(2), 1 + x),

	

(4 .4.3)

which is, of course, the same result as in [H4] .
For only three points, we quickly hav e

G3(x) = Z((S1S2)(2), 1 + x) = z[(1 + x)3 + (1 + x)(1 + x2)]

= 1 + 2x + 2x 2 + x3 .

To illustrate with p = 4, we observe tha t

Z(S 1 S3 ) = (1/3!)(sl + 3.qs2 + 2s 1 s3 ),

	

(4 .4.4)

and making use of Table 4.1 .2 yields

Z((S1S3)(2)) = (1/3 !)(s6 + 3sisz + 2s3) .

	

(4 .4.5)

On substituting 1 + x in this cycle index, the result i s

	

G4(x) = 1 + 2x + 4x 2 + 6x3 + 4x4 + 2x 5 + x6 ,

	

(4.4.6)

which is easily verified by inspection of the graphs of order 4 in Figure 1 .1 .2 .
In general one can make use of the cycle index formulas in Appendix III ,
as far as it goes, to obtain Z((S 1 Sp _ 1 )(2) ).

In our next illustration we take H = K2 so that hp(x) counts graphs
rooted at a line :

hp(x) = Z(S2 o Sp _ 2 , 1 + x).

	

(4 .4 .7)

(4.4.2)
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The identity

Z(S2 0 Sp_2) _ (a/as 1 )Z(Sp2) )

	

(4.4.8)

can be quickly verified . Hence we can use the cycle index formulas i n
Appendix III to obtain for p = 5 :

Z(S2 ° S3) = 12{s9 + 4s1s? + 2s3 + 3s1s2 + 2s3 s6 ).

	

(4 .4.9 )

On substituting 1 + x we fin d

h5(x) = 1 + 2x + 6x2 + 12x 3 + 16x4 + 16x5 + 12x6

+ 6x' + 2x8 + x9 .

	

(4 .4.10)

The counting polynomial for graphs rooted at a triangle is also easil y
obtained. We give the details for such graphs with six points . Since F(H) = S 3 ,
we use formula (4.4.2) to obtain

Z(S3 ° S3) = 36(si2 + 3sts2 + 6s3 + 3s1s2 + 9sis2

+ 6s3S6 + 2S3Si + 6S 1 S2S3S6) .

	

(4.4.11 )

From formula (4.4.1) we have

h6(x) = 1 + 2x + 6x2 + 15x 3 + 21x4 + 38x5 + 44x6

+ 38x ' + 21x8 + 15x9 + 6x 1 ° + 2x11 + x 12 .

The graphs enumerated by the coefficient of x 2 in this polynomial are
shown in Figure 4 .4.1, in which the lines of the root triangle are drawn using
dashes .

Our theorem is also effective if H is a digraph. For example, if H is an
oriented line, F(H) = E2 and so

hp(x) = Z(E 2 o Sp _ 2 , 1 + x) .

	

(4 .4.12)

0

0

	

0

o
N
----moo o

\
---o

	

-- 0

Figure 4.4. 1

The (6,5) graphs rooted at a triangle .
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An expression for this cycle index is obtained from (4 .4.2). For each per -
mutation /3 in Sp _ 2 , let flskk be the contribution to Z(S p _ 2 ) . Then

Z(E2 ° Sp-2) =
(p - 2)! E

(flskk)2(~~k)(2)

	

(4 .4.13)
a

and the sum is over all /3 in S,_ 2 . To illustrate (4 .4.13) with p = 5, recall tha t
Z(S3 )) = Z (S3),

Z(E2 ° S 3)

	

(1/3!)((4.)2s; + 3(s 1 S 2 ) 2 S 1 S 2 + 2(s 3 ) 2 s3) .

Then from (4.4.12)

h 5(x) = 1 +3x+9x2 +20x3 +27x`` +27x5

+ 20x6 + 9x' + 3x 8 + x9 .

(4 .4.14)

(4.4.15)

One can readily construct the graphs enumerated by these coefficients .
Finally we compute the counting polynomial for graphs with six point s

which are rooted at a cyclic triple . In this case

I'(H) = 3si + 2s 3 ) .
From (4.4.2) we obtain

(4.4.16)

Z(F(H) ° S 3) = 1—1${si 2 + 3s1s2 + 24. s3 + 6s 1 s2s 3 s6 + 6s3) ,

and from (4.4.1) it follows that

(4.4.17)

h 6(x) = 1 + 2x + 6x2 + 18x3 + 34x4 + 52x 5 + 62x6

+ 52x ' + 34x8 + 18x9 + 6x 10 + 2 x " + x' 2 . (4.4.18)

The corresponding graphs with q = 2 are shown in Figure 4.4.2 .

Of course many other graphs can be chosen for the root-subgraph H.
In particular, whenever the graph or digraph H has the identity group E,, ,
the formula (4.2.2) reduces t o

Z(E,, ° Sp_,,) =

	

1

	

(~skk)n(~skk)~z~

	

(4.4.19)
(p — n) !

where just as in (4 .4.13), the sum is over all /3 in Sp _ n .

Figure 4 .4 .2
The (6,5) graphs rooted at a cyclic triple .
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4.5 SUPERGRAPHS AND COLORED GRAPH S

Bicolored graphs were counted in Section 4 .3 and graphs rooted at a n
induced subgraph were handled in the preceding section . Our present objec t
is to extend both of these studies by counting graphs rooted at a subgrap h
which is not necessarily induced and then applying this to the enumeration
of m-colored graphs. The results involve a kind of a neat combination of a
rather pedestrian approach of [H5] with the elegant methodology of
Robinson [R17] .

If H is a subgraph of G, then G is a supergraph of H. Instead of the tediou s
phrase "the graphs G rooted at a subgraph H which is not necessarily
induced," we prefer to say "the supergraphs of H," which provides a mor e
effective mnemonic device .

We begin by obtaining a formula for the number of dissimilar p-poin t
supergraphs of a graph H also of order p. We will see in the next equatio n
that this involves the cycle index of the line-group of the complement of H.
It follows from the method of the preceding section for enumerating graph s
rooted at an induced subgraph H of order n, that the permutation group
required for handling the supergraphs of H can be obtained by enlarging the
object set of F(H) o Sp _ n to include the lines of H. In particular, if H is a
graph of order p, then the polynomial rp (x) that enumerates supergraph s
rooted at H is given by

	

rp(x) = Z(F 1 (H), 1 + x) .

	

(4 .5 .1 )

An interesting special case [H5] of (4 .5.1) has H as the cycle Cp of order p .
This serves to count the total number of dissimilar hamiltonian cycle s
appearing in all the (hamiltonian) graphs of order p . The line-group I' I(Cp )
can be expressed in terms of wreath products (compositions). For example
when p = 2n + 1, we have

	

Fl(C2n+1) = Den+1[En-1] ,

	

(4.5.2 )

from which Z(F 1(C2n+I)) can be computed using formulas (2.2.11) an d
(4.3.14). When p is even, one can compute Z(F 1 (C2n)) by multiplying eac h
term of Z(D2n[En _ 2]) by the appropriate term of Z(Dn ) .

To illustrate, when p = 5, formula (4 .5.2) becomes F 1 (C5) = D5 [E I ] = D5 .
and by (2 .2.11)

Z(D 5) = IOlsi + 4s5 + 5s 1 s2) .

Then on applying (4.5.1), we hav e

r 5 (x) = 1 +x+2x2 + 2x3 +x4 +x 5 .

(4.5.3 )

(4 .5 .4)



4.5 SUPERGRAPHS AND COLORED GRAPHS

	

105

This polynomial is verified by the graphs of Figure 4 .5.1 in which the roo t
C 5 is the cycle with dashed lines .

Now we turn to a general method for enumerating supergraphs. Let H
be any subgraph of order n of the complete graph K p . Then the produc t
F(H)S,_„ is the group consisting of all permutations in f'(Kp ) = S,, that fix
H ; that is, they permute the points of H among themselves . The group
required for counting supergraphs of H is the restriction of the pair grou p
(F(H)Sp_„)(2) to the pairs of points which are not adjacent in H. We denote
this restriction by F 1 (H, Kp) . Note that if H has p points, then F 1 (H, Kp ) _
F 1 (H). Furthermore if H is connected, then F 1 (H, Kp) is just the line group o f
the complement of H in Kp .

Up to now, we have a theorem [H5] which determines the number o f
supergraphs of a given graph in principle, but no effective method fo r
reckoning the required cycle index . Such an algorithm was provided b y
Robinson [R17]. As soon as this procedure is developed, we will have demon-
strated the next theorem. Therefore it is particularly convenient at thi s
juncture to present first the proof and then the theorem, contrary to th e
wise admonition of G . E . Uhlenbeck. In order to calculate the cycle index o f
F 1 (H, Kp), we define the point-line group of a graph G, denoted Fo ,t (G), to
be that permutation group induced by I'(G) which permutes both point s
and lines of G. When writing the cycle index of this group we shall distinguis h
the cycles of objects being permuted by using two sets of variables, Sk for
points and t k for lines. For example, if G is the (4, 5) graph K4 — x, then

Z (Fo .t( K4 — x)) = -14(401 + 2sis 2 t 1 t2 + si t l t i)

	

(4 .5 .5 )

From (2.2.14) it follows that the cycle index of F(H)S p _,, is given b y

Z(F(H)Sp _ „) = Z(F(H))Z(S p _„) .

	

(4.5.6 )

Similarly Z(F0,1 (H))Z(Sp _ „) is the cycle index of the group induced b y
F(H)Sp _„ which acts on the points of Kp and the lines of H. Each permutation

0

C(	 	 `i)

0--- -Ot

	

0----ot

Figure 4.5 . 1
The eight graphs of order 5 rooted at a spanning cycle .
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a in I'(H)Sp _„ contributes a monomial (fsk k) (ftk) to Z(F0,1 (H))Z(Sp _ „) .
The corresponding contribution of a to Z(Sp) is denoted as usual b y
(flsk'12) . Thus, and note carefully this trick of Robinson, a contributes th e
product (flskk)(2'fls,-tk to the cycle index of F 1 (H, K p ) because multiplying
by fls,;-ik has the effect of eliminating the terms of (fl4k)(2) which arise from
pairs of points that are adjacent in H. Therefore we define the linear operator
p (standing for Robinson) for point-line cycle indexes by specifying it fo r
monomials as follows :

p((IISkk)(fJtkk)) = (flskk)(2)TJs,-1k .

	

(4.5 .7 )

Now the counting of supergraphs takes the form :

Theorem The counting polynomial rp(x) that counts supergraphs of orde r
p of any graph H of order n < p is

rp(x) = Z(F 1 (H, K p), 1 + x),

	

(4 .5 .8)

where

Z(F 1(H , K p)) = p(Z(F0,1(H))Z(Sp-„)) .

	

(4 .5 .9 )

Note that if H is a graph of order p as in (4.5.1), then (4 .5.9) becomes

Z(F1(H )) = pZ(F0,1(H)) .

	

(4.5.10 )

Thus the operator p enables us to obtain the line cycle index for any grap h
from the point-line cycle index of its complement .

We illustrate with H = C6 , the cycle of order 6 and take p = 6 . The
point-line cycle index of any cycle graph Cp is readily computed from (2 .2 .11) ,
the formula for~Z(s p). When p = 6 we hav e

Z (F0,1(C6)) = 121S6 I6 + S2t2 + 2s3t3 + 2s6 t6 + 3Sis2 t2 + 3s23
2

t
i
t2) . (4 .5 .11 )

On applying p to (4 .5 .11) we find

Z(r 1( C6)) = 121S15S1 6 + SiS2S2 3 + 2S3 S 3 2 + 2S3s6S6
1

+ 3sis2s2 3 + 3s3ls2sl 2S2 2)

= -Ms? + 4sis2 + 2s3 + 2s3s6 + 3s 1 s2) .

	

(4 .5 .12 )

From (4.5.8) and (4.5.12), it follows routinely tha t

r6(x) = 1 + 2x + 6x2 + 12x 3 + 16x4 + 16x 5 + 12x6 + 6x '

+ 2x8 + x9 .

	

(4 .5 .13 )

Of course this polynomial could also be obtained as for (4 .5.2-4). The
coefficient of x 2 is verified in Figure 4.5.2 .
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Figure 4.5. 2
All six (6,8) graphs rooted at a spanning cycle .

We now turn to m-colored graphs and follow Robinson's treatmen t
[R17] by applying Theorem (4.5.8). By definition, the points of an m-colored
graph have been partitioned into in sets so that adjacent points are always
in different sets . The points of each set are given the same color . For example ,
the 3-colored graphs in Figure 4 .5.3 have two points of each color and the
points joined by dashed lines have the same color.

As in Section 4.3 we determine the number of m-colored graphs for a
specified m-part partition (j) of p :

p
m = E

	

(4.5.14)
k= 1

with E k _ 1 kjk = p as usual . Let bp(( j), x) be the polynomial that enumerate s
m-colored graphs of order p with (j) as color partition. For example, wit h
p = 6 and partition 2 + 2 + 2, i .e ., j2 = 3, b6((j), x) counts 3-colored graphs
of order 6 which have two points of each color . We will show that for this
partition of 6 ,

b6((j), x) = 1 + x + 4x 2 + 9x 3 + 18x4 + 24x 5 + 30x6

+ 24x' + 18x $ + 9x9 +
4x10 + x 11 + x 12 (4.5 .15)

Figure 4.5.3 verifies the coefficient of x 3 in this equation .

o—o

	

o-o

	

0 d

	

d

Q-

	

-0_

~	

0 ~---- O

0

Figure 4 .5 . 3
All nine (6,3) 3-colored graphs with two points of each color .
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We define the complete m-partite graph K(j) for any m-part partition (j)
of p as the complement of the union of m complete graphs :

P

K(j) = U jkK k
k= 1

(4.5.16)

As before, the m-colored graphs we wish to count are the spanning subgraph s
of K(j) . Therefore it follows from (4 .3.2) that

bp((j),x) = Z(11(K(j)), 1 + x),

	

(4 .5 .17)

and we must find a method for determining the cycle index of F 1 (K(j)) .
But the spanning subgraphs of the complete m-partite graph K(j) are precisely
the supergraphs of K(j). This suggests the idea of expressing the cycle inde x
of F 1(K(j)) in terms of the operator p and Z(F'o,1(K(j)) by taking H = K(j)
in (4 .5.10). Thus it is sufficient to find a means for calculating the cycle inde x
of F0,1(K(j)), and this we now do .

We denote by nG the graph which consists of n disjoint copies of th e
connected graph G. It follows [H1, p. 166] from the definition of the wreath
product that

F(nG) = Sn[F(G)] .

Therefore from (4.3.14) the cycle index of this group i s

Z(I'(nG)) = Z(S„) [Z(F(G))] .

Equation (4.5.19) is readily extended to obtai n

Z (F0,1(nG)) = Z(S,,)[Z(Fo,1(G))]•

(4 .5 .18 )

(4.5.19 )

(4.5 .20)

Using the same example as in (4.5.15) by taking G = K2 and n = 3, formula
(4.5.20) becomes

Z(F0,1(3K2)) = Z(S3)[Z(Fo,1(K2))] .

	

(4 .5 .21 )

Now Z(Fo ,1 (K2)) = 2{sit 1 + s2 t 1 ), and if we substitute this expression with
all subscripts multiplied by k for each Sk in Z(S 3 ), we obtain

Z(T0,1(3K2)) = Offs + 16 S 1 S 2t 1 + 16S 1 S 2t 1 + 48S 2 t 1

+ 8Siszt l t 2 + 8sis4 t 1 t2 + 8s2t 1 t 2

+ s2 S 4t 1 t2 + 6s3t 3 + bs 6 t3 .

	

(4 .5.22)

In the general case of K(j), whose components are complete graphs, the
group can be expressed [HI, p . 166] as the produc t

F(K(j)) = fl Sj k [F (Kk)] .

	

(4.5.23)
k
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From (4.5.20) it follows that

Z(Fo,1(K(j))) = fl Z(Sik)[To.1(Kk)] .

	

(4.5.24)
k

For convenience we denote Fo .i (K,,) by S(,," 2) and observe that the point-lin e
cycle index is easily obtained from Z(5(,,2) ) . As noted above, K(j) = 3K2

when p = 6 and j2 = 3. Thus (4 .5.22) provides the cycle index of the point-line
group of the complement of the complete 3-partite graph of order 6 wit h
two points of each color .

Now we can summarize Robinson's method [R17] for counting m-colore d
graphs .

Theorem The counting polynomial bp((j), x) for m-colored graphs of order
p with partition (j) is

b p((j ), x) = Z(F1(K(1)), 1 + x)

	

(4 .5 .25)

where

Z(F1(K(j))) = p(II Z(Sik)[Z(Sk1
.2))]) .

	

(4.5.26)
k

In the example, we have already found Z(S 3 ) [Z(S21 .2')] in (4 .5.22). From
the definition of p we have for j 2 = 3,

Z(F1(K(j))) = 48 5 1 55 1 3 + 165 1 5 2 5 1 3 + 16 5 1 5 2 5 1 3 + 485 1 5 2 5 1 3
+ 81535651-1S2

	

8
-1 + 1S1S25435-152-1 + 1 5 3 5 6 5 -1

52
- 1

1 2

	

1

	

8 1 2 1

+ 651525451 1 5 2 1 + 65353 1 + 6535653 1 .

	

(4 .5 .27)

On simplifying this expression we have

	

Z(F1(K(j))) = 48 5 1 2 + 16 515 2 + 1252 + 45 1 5 2 + 4 54 + 6s 3 + 656 .

	

(4.5.28)

Finally we make the substitution Sk = 1 + xk in the right side of (4.5.28)
to obtain (4.5 .15). Using this theorem Robinson has computed the number o f
3-colored graphs for p < 9 and all possible partitions .

Although the enumeration of bicolorable graphs is feasible as mentione d
in Section 4 .3, we must emphasize that the counting of m-colorable graph s
with m > 3 remains unsolved, see Chapter 10 .

4.6 BOOLEAN FUNCTIONS

A boolean function of n variables may be regarded as a mapping from th e
set of all n-sequences of zeros and ones into {0, 11 . In disguise, it is therefore
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a subset of points of the n-cube Q, . Our object is to count the number o f
types of boolean functions with equivalence determined by the group of
Q n

We have seen that the cycle index of the line-group of G serves to coun t
spanning subgraphs . In this section we study the uses of the cycle index o f
the point-group of G and find that it is useful in counting dissimilar sets o f
points. The most interesting application of this technique enables us t o
enumerate the types of boolean functions .

By way of preliminaries for the counting of boolean functions, we interpre t
equation (2 .5 .1) for Z(A, 1 + x) in the case that A is the group F(G) of a
given graph G .

(4.6.1) Theorem The coefficient of x r in Z(F'(G), 1 + x) is the number o f
dissimilar sets of r points, with equivalence determined by the automorphis m
group of G.

To illustrate, consider the graph G of Figure 4 .3.1 . The cycle index of it s
group is given b y

Z(F(G)) = [Zsi + s2)]2 = (si + 2sis2 + si)

	

(4.6.2)

so that

Z(T(G), 1 + x) = 1 + 2x + 3x 2 + 2x3 + x4 .

	

(4 .6.3 )

The middle term of this polynomial is verified by Figure 4 .6.1 in which th e
two points in the subset are solid .

Polya [P9] found that the early work of Jevons [J1] and Clifford [C4]
on counting types of boolean functions led to numerical results which wer e
not entirely correct. The problem was to find the number of "different "
propositions composed of n statements, each of which has two truth values
0 or 1. Using the familiar symbols V (or) and A (and) for disjunction an d
conjunction, the proposition PI V (P2 A P3 ) is composed of PI . P2 . and P3 .
Now with 1 and 0 representing the two truth values, one sees that composed
propositions correspond in a natural way to boolean functions . For example .
Pl V (P2 A P3 ) corresponds to the function f which sends (0, 0.0). (0, 0. H.
and (0, 1, 0) to 0 and all other triples to 1 . But we wish to consider two com-
posed propositions to be equivalent not only when their correspondin g

Figure 4 .6 . 1

The dissimilar sets of two points in a random graph .
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boolean functions are identical, but also whenever one can be obtained fro m
the other by permuting the statement or changing any statements to thei r
negation . Thus it is seen that P I V (P2 A P3) is considered equivalent t o
(P3 V not P,) A (P3 V P2) by using the distributive law for disjunction ove r
conjunction .

Polya recognized that the problem at hand was to determine the numbe r
of ways in which the 2" points of the n-cube Q n can be colored using two differ -
ent colors . This follows from the fact that the group of Q " is identical to th e
group that permutes the n statements arbitrarily while also changing state-
ments to their negation . We can express this group using the exponentiatio n
operation [H9] so that

r(Qn) _ [S2] S " .

	

(4.6.4)

The exponent group S n indicates that the n propositions P; can be permuted
at will, while the base group S 2 allows for the possibility of negating each
variable after this permutation . On applying (4 .6.1) with this permutation
group, the main result of this section can be stated . The cycle index of thi s
group was first presented by Slepian [S3] in a rather involved appearanc e
which did not recognize the exponentiation group as such.

(4.6.5) Theorem The number N(n, r) of different boolean functions of n
variables which have exactly r nonzero values is the coefficient of x' i n
Z([S2 ] s , 1 + x) .

To illustrate, we display in Figure 4.6.2 the six ways of coloring the
points of Q 3 with four points of each color, thus verifying the coefficient o f
x6 in Z([S 2]s3, 1 + x). Note that the necklaces of Figure 2.4.2 correspond
precisely to boolean functions of two variables, because in a four-bea d
necklace, the action takes place on the 2-cube .

Using the fact that F(Q,,) and the wreath product S"[S2 ] are abstractly
isomorphic . Polya calculated the cycle indexes Z(F(Q n)) for n < 4. On
applying the theorem above, he found the entries in Table 4 .6.1 . Because
of the close connection between boolean algebras and switching circuits ,
Slepian [S3] was motivated to calculate the total number of boolean functio n

Figure 4 .6 . 2

The cubes with four points ofeach color .
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TABLE 4 .6 . 1

THE NUMBER OF BOOLEAN FUNCTION S

0 1 2 3 4 5 6 7 8 Total

1 1 1 1 3

2 1 1 2 1 1 6

3 1 1 3 3 6 3 1 1 1 22
4 1 1 4 6 19 27 50 56 74 402

for n = 5 and 6 . Harrison and High [HH1] also devised a rather complicate d
method for determining Z([B] sn ) and used it for computing some classes o f
Post functions. The most compact formulas for Z([B]A ) were found by
Robinson and Palmer as reported in [P3] . We now sketch some of th e
details of the latter approach in order to supply a reasonable means fo r
obtaining the cycle index in Theorem (4 .6.5).

First we define a product, denoted by x for monomials, compar e
(4.1 .16), by

A lskk x fSk =

	

S~~'~),Irk .

	

(4 .6 .6)
r, r

As shown in [H7], if this product is extended linearly, the cycle index Z(A x B)
of the cartesian product can be expressed a s

Z(A x B) = Z(A) x Z(B) .

	

(4 .6 .7 )

For each positive integer r, a new operator Jr is defined for monomials by
n

Jr [1 Skk = v s ;;

	

(4 .6 .8 )
k=1

	

v = 1
where

(r,v)

E wiw =

	

E kjk

	

.

	

(4.6.9)
wIv

	

kIv/(r,v )
Clearly J 1 is the identity operator . Using mobius inversion on (4 .6.9), we
can write

1

	

(r, w)
=— E µ(v/w) E kik

	

(4.6.10)
v w I v

	

kl w /( r , w )

The Jr are then extended linearly . The preceding five formulas can be use d
to express Z([B] A ) in terms of Z(A) and Z(B) for any permutation group s
A and B. The manner in which this is accomplished will be clear when w e
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illustrate with A = S3 and B = S2 , so that we are dealing with the group
of Q 3 . The hardest part is to calculate the operators J r . First we substitut e
the operator J r for each variable s r in Z(S3 ) to obtain

	

Z(S3 ; J 1 , J 2 , J3) _ *(J~ + 3J 1J2 + 2J3) .

	

(4.6.11 )

Next, the terms of (4 .6.11) act on Z(S 2) as follows :

Ji(Z(S2)) = J 1 (Z(S2 )) X J 1 (Z(S 2)) X J 1 (Z(S2))

J 1 J2(Z(S2)) = J 1 (Z(S 2 )) X J2(Z(S 2 ))

	

(4 .6.12)

It follows from the definitions tha t

J 1 (Z(S2)) = Z(S2) _ (si + s2)

	

(4.6.13)

and

J2(Z(S2 )) _ (J2(si) + J2(s2)) = 2(Si s2 + s4)

	

(4.6.14)

and

J3(Z(S 2)) = 2(J 3(S 1) + J 3(S2)) = 2(S1S3 + S2 S 6).

	

(4 .6.15)

From (4 .6.12) and the definition (4 .6.7) of the cartesian product x fo r
polynomials, we find

J(Z(S2)) = ,3 (s$ + 7s42),

	

J 1 J 2(Z(S2)) = 22 (s4S2 + sz + 2s).

	

(4 .6.16)

Lastly, on substituting the polynomials of (4 .6.15) and (4.6.16) for the cor-
responding terms in (4 .6.11), we obtain Z([S 2 ] s3) in a form reminiscent of the
equations in Polya [P9] :

S3

	

1 (s8 + 7S4)

	

(S4S2+

	

sZ + 2sf)

	

(SLS3 + S 2 S6)
Z([S2] )

= 6

	

2 3
	 + 3	

2 2
	 + 2	 2	 	 (4.6 .17)

Thus as shown in [P3], the cycle index Z([B] A) of any exponentiation
group can be expressed as the image of Z(B) under the operato r
Z(A ; J 1 , J2 , . . .) . In this way, all enumeration problems in which the con -
figuration group can be viewed as an exponentiation group can be solved i n
principle .

4.7 EULERIAN GRAPHS

Even graphs (with every point of even degree) and eulerian graph s
(connected even graphs) were counted in Section 1 .4 in the labeled case . The
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more subtle problem for unlabeled graphs was solved when Robinson
[R18] viewed this challenge from just the proper perspective . To count
eulerian graphs with p points, hb first counted the even ones and then applied
the usual technique for expressing the number of connected configuration s
in terms of the total number .

This section consists mainly of the proof of Robinson's formula for th e
number of even graphs of order p . The formula bears a noticeable resemblanc e
to that for counting graphs, using the cycle index (4 .1 .9) of the pair group of
the symmetric group, for it is based on that result .

Theorem The number wP of even graphs of order p is

w = 1	 p	 J	 2e(i )
P

P ! (i) 11k k'k1k

where sgn is the usual sign function in

e(j) =

	

(r, t)jrjt + E k
Jk

r<t

	

k= 1

	

2
+ E (k - 1 )(J2k + J2k+ 1) + sgn E J2k+ 1

k=0

	

k= 0

Proof Following Robinson, we apply the variant (2 .3 .9) of Burnside's
Lemma in which there is a restriction to the appropriate subset of the objects .
We have seen that the orbits of the power group 0 ' correspond to graphs
of order p . On restricting this group to the set F of functions that represen t
even graphs, we can apply (2 .3 .9) to express wP in terms of the functions in F
fixed by the permutations in this power group . In other words for each
permutation a in SP , we seek the number of functions fin F such tha t

f{i,j} = f(ai,aj} .

	

(4 .7 .3 )

Thus to prove the theorem, we must show that if the cycles of a determine th e
partition (j) of p, then the number of functions in F satisfying (4.7.3) is 2e0'

where e(j) is given by (4.7.2) .
Before launching into the details of this proof, we try to clarify th e

treatment by displaying in Figure 4 .7.1 an even graph which corresponds t o
a function f in F satisfying (4.7.3) for a specific permutation a of degree 13 .
namely

a = (1 2 3 4)(5 6)(7 8 9)(10)(11)(12)(13) .

By only a slight abuse of language, we say that this graph is fixed by
Both solid and dashed lines appear in order to see the action of a on the line s

(4.7 .1 )

(4.7.2)
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Figure 4 .7 . 1

An even graph fixed by a = (1 2 3 4) (5 6) (7 8 9) (10) (11) (12) (13) .

more vividly. The sense in which some lines are solid and others are dashe d
will hopefully become clear as the proof unfolds .

First we find the contribution to 2 e(') made by cc when the cycles of cc
are considered individually . If z k = (123 • • k) is any odd cycle of cc, then w e
know that Zk induces (k — 1)/2 cycles of 2-subsets of its points . Each point
of zk is incident with exactly two lines of each of these cycles, for example ,
see Figure 4 .7.2a. Hence each of these (k — 1)/2 cycles may be either include d
or excluded in an even graph fixed by cc . Therefore the contribution to e(j)
for all odd cycles considered individually is E k _ 1 j k (k — 1)/2 ; compare
(4 .1 .14). Similarly if k is even, the contribution to e(j) is 1k=2 jk(k — 1)/2 ;
compare (4 .1 .15). Note that the cycle of 2-subsets of length k/2 is excluded
because each point of z k is incident with only one of the 2-subsets of this
cycle. For example, in Figure 4.7.2b, this cycle is shown with dashed line s
and it contributes an odd degree (one) to the points in the figure .

As in counting graphs we next consider pairs of cycles Z r and zt of cc and
the 2-subsets which have one point in each of these cycles . In determining

(a)
Figure 4.7. 2

Graphs fixed by odd and even cycles .

(b)
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the cycle index of the pair group, we saw that these cycles zr and zt induce
(r, t) cycles of length [r, t] on such 2-subsets ; compare (4.1 .16). Thus each
point of Zr is in [r, t]/r of the 2-subsets of one such cycle of length [r, t] . Note
that if t is even and .r is odd, each point of z r is in an even number of such
2-subsets . With this in mind, we now consider all pairs of cycles zr and zt
with r or t even. Let U be any collection of cycles of 2-subsets with one poin t
in each of these two different cycles Zr, zt . Then each point of an odd cycl e
is in an even number of 2-subsets in the cycles of U . Each point of an even
cycle Zk may be in either an even or an odd number of these 2-subsets .
Therefore we see that the cycles of U can determine an even graph by eithe r
including or excluding the cycle of length k/2 induced by Zk, as necessary .

Adding the two cases r t and r = t, we see that the total number o f
cycles in U is

J2 k
(r , t)Jrjt + E 2k 2

r<t

	

k= 1

where at least one of r and t is even. Hence this is the contribution to e(j )
from pairs of objects between two cycles of a, at least one of which is even .
Note that in Figure 4 .7.1 it is necessary to include the dashed lines of th e
cycle (1234) as well as the dashed line of the cycle (56), in order to get a n
even graph .

We have not yet handled the 2-subsets with one point in each of two
different odd cycles. We select one special odd cycle, say z, and let W be a
collection of cycles of 2-subsets obtained by choosing for each odd cycl e
zr z one of the cycles of 2-subsets whose points are in z and zr . Thus W
will have (Ek = O J2k+ 1) — 1 cycles. We can now determine an even graph fo r
each selection of those cycles of 2-subsets not in W. This is accomplishe d
by either including or excluding each cycle in W as necessary to make eac h
point of the odd cycles other than z lie in an even number of 2-subsets .
Then, since Euler proved that the number of points of odd degree in an y
graph must be even, the points of z as well will be in an even number of
2-subsets . The number of such cycles not in W when r and t are both odd i s

( I . )Jt r1t +

	

1 ) (12

	

1 \1 _(m—1 )
r<t

	

k=0

	

2

where rn is the number of odd cycles unless that number is 0 in which cas e
m = 1 . In Figure 4.7.1 we have illustrated this with z = (10), and here W
consists of the cycles of dashed lines emanating from the point 10 . After
joining point 11 with points 7, 8, 9, 12, and 13, it was necessary in this case
to include all the lines of W to obtain an even graph .

Combining all these observations and adding the various contributions ,
(4 .7 .2) is verified, and even graphs are counted .

	

If
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Figure 4.7 . 3

The eight eulerian graphs of order 6 .

Robinson used these formulas to calculate the number wp of even graphs
forp<8 :

w(x)=x+x2 +2x3 +3x4 +7x 5 +16x6 +54x ' +283x8 + . . . (4.7.4)

The seven even graphs of order 5 are shown in Figure 1 .4.3, where labeled
even graphs were counted, verifying the coefficient of x 5 . The generating
function u(x) for eulerian graphs can be obtained in the usual way by agai n
applying (4 .2 .3), which counts connected graphs in terms of all graphs . The
first few terms of u(x) are

u(x)x+x3 +x4 +4x5 +8x6 +37x ' +184x8 + . . .

	

(4 .7.5)

The coefficient of x 6 is verified in Figure 4.7.3 .

EXERCISES

4.1 Find the polynomial which counts the ways in which the lines o f
(a) the (5, 9) graph and (b) K 333 can be colored with three colors . (Hint :
See (4 .3.2) . )
4.2 Find the cycle indexes Z(S 2 [C3]), Z(C3 [S2 ]), and Z(S3[D4]) .

4.3 Find the cycle index for the graph with four components, (a) each a
triangle, (b) two triangles and two isolated points .
4.4 Pure two-dimensional simplicial complexes, which consist of a finite se t
X together with a collection of 3-subsets of X.

	

(Harary [H4] )
4.5 Multigraphs of strength s, in which at most s lines join any pair of
points .
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4.6 Signed graphs, in which the lines may be positive or negative .
(Harary [H3] )

4.7 Balanced signed graphs, in which no cycle has an odd number of negativ e
lines .

	

Harary and Palmer [HP10] )

4.8 Point-symmetric graphs, whose groups are transitive, of order p, a prime .
(Turner [Tl])



Lord Ronald jumped on his horse and rode off madly

in all directions.

Stephen Leacock

Chapter f DIGRAPHS

In this chapter, the four sections count digraphs, tournaments, orienta-
tions of a given graph, and "mixed graphs" in which both arcs and undirecte d
lines can appear . In addition to enumerating all digraphs, we handle relation s
and connected digraphs . The counting of tournaments yields that of strong
tournaments as a corollary. Our formula for the number of mixed graphs
contains. as special cases, which easily can be stated explicitly, the countin g
of graphs, digraphs, oriented graphs, complete digraphs, and tournaments .

A word about enumeration methods is in order. Digraphs are counted
by modifying only slightly P6lya's method for enumerating graphs. This i s
accomplished by developing a new unary operation on a permutation group ,
called the reduced ordered pair group, whose purpose is to act on ordere d
pairs of distinct objects involved in the original permutation group .

The cycle index of the reduced ordered pair group of S, is used to coun t
digraphs. This cycle index is then modified to enable us to count tournaments ,
by restricting the associated power group . Applying this idea to the reduced
ordered pair group of an arbitrary graph and using two sets of variables i n

119
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5 DIGRAPH S

the resulting cycle index, we can then count its orientations . These methods
culminate in a general theorem for counting mixed graphs, which makes us e
of the same cycle index as for digraphs, again with two sets of variables an d
special purpose figure counting series .

5.1 DIGRAPHS

This section parallels the derivation of the graph-counting polynomia l
gp(x) and the associated cycle index of the pair group of Sp . While there ar e
only 11 graphs of order 4, there are 218 digraphs of order 4. The formidabl e
task of drawing all 218 digraphs has been performed, and the diagrams ma y
be found in Appendix 2 of [H1, p . 226] .

Let dp(x) be the counting polynomial for digraphs of order p so that, fo r
example

d3(x) = 1 + x + 4x 2 +4x 3 +4x4 +x5 + x 6 .

	

(5 .1 .1 )

These coefficients are verified by Figure 1 .1 .5 .
We now show, following [H11], how PET can be used to determine dp(x) .
Let X = { 1, 2, . . ..,p}, and let XE21 denote all ordered pairs of differen t

elements of X. With Y = {0, 1}, the functions from XE21 into Y represen t
labeled digraphs of order p. Each function f corresponds to that digrap h
D(f) with point set X in which there is an arc from the point i to the point j
if and only if f(id) = 1. Thus two functions f and g represent the same
digraph if there is a permutation a of X such that if i is adjacent to j in D(f)
then ai is adjacent to aj in D(g). Therefore D(f) and D(g) are isomorphic if
and only if

f(id) = g(ai, aj)

	

(5 .1 .2)

for all (id) in x[2 ] .
This equation suggests the next unary operation on permutation groups .

If A is a permutation group with object set X, the reduced ordered pair group
of A, denoted A' 21, has X [21 as its object set and is induced by A . That is, for
each a in A, there is a permutation a ' in A' 21 such that for every pair (i, j) in
X'21 the image under a ' is given by

a'(i, j) _ (ad, aj) .

	

(5 .1 .3 )

We can now state the formula for the number of digraphs .

Theorem The counting polynomial dp(x) for digraphs of order p is given b y

d p(x) = Z(Sp2l , 1 + x)

	

(5 .1 .4)
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where

Z(S[2] ) = 1)
E

	 P

k 	
f s~k-1)i k +2k(zk)

	

S ~r( ,t)i-J,

	

(5 .1 .5 )
p

	

p (j) Ik Jk• k1=11

	

r< t

Proof The equation (5.1 .4) is in the form of Corollary (2 .5.1) of the PET.
We show that the reduced ordered pair group of Sp is the correct configura-
tion group . Two functions f and g from X [2] into {0, 1} represent the same
digraph if and only if there is a permutation a in S, such tha t

f(z) = g(a 'z)

	

(5 .1.6)

for every z in X [2] . Consequently, the orbits of the power group EF cor-
respond to the different digraphs .

The figure counting series is 1 + x because, as for graphs, the arc (i, j)
is either absent or present. Thus by the usual definitions (2.4.4) of the weight s
of functions and orbits, the weight of an orbit of Est' is the number of arcs
in the corresponding digraph, proving (5 .1 .4) .

Our object now is to derive formula (5 .1 .5) for Z(Sp2]), but first we illustrate
with p = 4 in order to clarify the derivation of the more general cycle index .
Each of the five permutations in S4 induces a permutation in the reduce d
ordered pair group S 42]. Table 5.1 .1 shows the terms in S421 induced by each
term of Z(S 4) .

One of these terms is now illustrated . In Figure 5 .1 .1 the ordered pairs ar e
indicated for conciseness by juxtaposition : (1, 2) = 12, and so on .

Collecting terms, we find tha t

Z(S42] ) = 2—14{s1 2 + 6sis2 + 8s3 + 3s2 + 6s4),

	

(5 .1 .7)

so

Z(S42], 1 + x) = d4(x) = 1 + x + 5x 2 + 13x 3 + 27x4 + 38x5 + 48x6

+ 38x' + 27x' + 13x 9 + 5x 10 + x 11 + x 12 .

(5 .1 .8 )

TABLE 5 .1 . 1

Term of Z(S 4 )

	

Induced term of Z(S42))

S 4 S 1 2
1 1
2 2 5S 1 S 2 S 1 S 2

S 4S ' S 3 3
2 6S 2 S 2

3S4 S 4
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014

	

041

	

024

	

42

	

34

	

2 .

	

1 2

	

4<C::-.>3

	

21

	

13

	

31

	

23

	

32

	

43
0

Figure 5 .1 . 1

The permutation (1) (2) (3 4) and its induced permutation in 4 1 .

We indicate the correspondence between terms of the cycle indexes o f
Sp and Spt3 for p = 4 by writing

	

s
i

—> s i
t ,

	

sis2 --~ sis2

and so on . To obtain an expression for Z(Sp2 '), we need to find the missin g
right hand member of

	

sits-i2222 . sip, -- ?

	

(5 .1 .9 )

Just as in the derivation of Z(Spt) ), when we consider more than on e
cycle in the same permutation cc of S p , there are two separate contribution s
to the corresponding term of Z(Sp21 ) . The first comes from pairs of element s
of X, both in a common cycle of c ; the second from pairs of elements, on e
in each of two different cycles of a .

To determine the first of these contributions, consider a cycle Zk of length
k in cc . There are k(k — 1) pairs in X t21 of elements permuted by zk . These
pairs are permuted in cycles of length k by cc' . Hence cc' permutes them in
k — 1 cycles of length k each. Thus if there arejk cycles of length k, the pair s
of elements lying in common cycles contribut e

	

Skk

	

S (kk -1 )ik

	

(5.1 .10)

Now consider any two cycles of cc, say Z r and zt of length r and t respectively .
There are 2rt pairs (i, j) in X 121 , with i permuted by Zr and j permuted by
z t . These pairs are permuted in cycles of length [r, t] by cc'. Hence a' permute s
them in 2(r, t) cycles of length [r, t] each. Thus the contribution of pairs o f
cycles of length r with cycles of different length t

	

r is

srrst t _j
S [Y

r=]) .1rJ t

Finally the contribution of pairs of cycles o)f the same length k is

k

	

k

(5 .1 .11 )

(5 .1 .12 )

Now the right side of (5 .1 .9) and hence also of equation (5 .1 .5) can be
filled in by multiplying the right sides of (5 .1 .10), (5 .1 .11), and (5.1 .12) over
all applicable indexes.

	

//
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c

0

Figure 5 .1 . 2

The relations on two points .

The formulas in this theorem were used to compute the number dp of
digraphs of order p < 8 in Appendix I and in Table 5 .1 .1 . The results agree
with those of Oberschelp [01], who used the same formulas .

No loops are permitted in digraphs since they are defined as irreflexive
relations. To count relations on p points in which loops can occur, we nee d
to extend the object set of Sp2I to include all ordered pairs in X x X. The
permutation group obtained is called the ordered pair group of S p and is
denoted by S . Its cycle index is obtained on modifying formula (5 .1 .5) for
Z(SP2l ) by multiplying each term in the sum by Fisk' . Then the polynomia l
rp(x) which counts relations is given b y

rp(x) = Z(Sp, 1 + x) .

	

(5 .1 .13)

From this equation, we find that for p = 2

r2(x) = 1 + 2x + 4x 2 + 2x3 + x4,

	

(5 .1 .14)

and these coefficients are verified in Figure 5 .1 .2 .
A digraph is called connected if on ignoring all orientations on its arcs ,

the resulting multigraph is connected . Such digraphs are called "weakly
connected" in [HNC1] . Connected digraphs are counted in terms of al l
digraphs by the identical method (4.2.3) used for connected graphs . We
conclude by observing that if gp in formula (4 .2.6) is replaced by the number
dp of digraphs of order p, then equation (4 .2.9) which involves parameter s
ap can be used to compute the number of connected digraphs . The results of
this computation for p < 8 are in Table 5.1.2 .
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TABLE 5 .1 . 2

CONNECTED DIGRAPHS

p do pan cn

1 1 1 1
2 3 5 2
3 16 40 1 3
4 218 801 199
5 9 608 46 821 9 364
6 1 540 944 9 185 102 1 530 843
7 882 033 440 6 163 297 995 880 471 142
8 1 793 359 192 848 14 339 791 693 249 1 792 473 955 306

5 .2 TOURNAMENTS

Labeled tournaments (Figure 1 .1 .6) are equal in number to labeled
graphs ; this is emphatically not so for unlabeled tournaments . All tourna-
ments with p = 2, 3, and 4 points are shown in Figure 5 .2.1 . The first tourna-
ment with three points is called a transitive triple ; the second a cyclic triple .
For a concise, comprehensive treatment of topics on tournaments, the boo k
[M2] of Moon is an excellent source.

The counting of tournaments is due to Davis [D1] ; see also Moo n
[M2, p . 84] .

Theorem The number T(p) of tournaments of order p is

1

	

p!

	

t

	

T(p) = i 1* ~k .

	

	 i2"
p !c5

Figure 5 .2 . 1
The smallest tournaments .

(5.2.1 )
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where the asterisk on E calls attention to the unconventional summing onl y
over those partitions (j) with jk = 0 whenever k is even, and where

1

	

P

	

p

t(j) = — E jmin(m , n) — E jk

	

(5 .2.2)
2 m,n=1

	

k= 1

Proof We first verify (5 .2.1) . As in the proof of Theorem (5 .1 .4), the orbit s
of the power group EV ' correspond to digraphs of order p. On restricting
this group to the set F of functions f which represent tournaments, namel y
those f for which f(i, j) f (j, i), the version (2.3.9) of Burnside's Lemm a
can be applied. As a result, T(p) can be expressed in terms of the number o f
functions in F fixed by the permutations in the same power group . Thus for
each permutation a in S p , we seek the number of functions f in F such that

f(i, j) = f(ai,

	

(5 .2 .3)

for all (i, j) in X121 . The functions which satisfy (5 .2.3) are precisely those fixe d
by the permutation in this power group induced by a . By a slight abuse of
language, we say that they are "fixed by a ." Therefore if the cycles of a
determine the partition (j) of p, we need to show that the number of function s
in F fixed by a is 20j) .

Again let a' be the permutation in Sp2, induced by a. We define the
converse of any given cycle z' in the disjoint cycle decomposition of a ' as
that cycle of a' which permutes all ordered pairs (i, j) such that (j, i) is permuted
by z' . A cycle z' of a' is called self-converse if (i, j) is permuted by z' wheneve r
(j, i) is .

To determine the contribution to t(j) made by a when the cycles of a
are considered individually, let f represent a tournament fixed by a so tha t
(5.2.3) holds . Therefore f is constant on the cycles of a' .

We now justify the asterisk on the summation sign in (5 .2.1). If
z k = (123 . • • k) is any even cycle of a then a' has a self-converse cycle z' ,
namely the one which acts on both (1, (k/2) + 1) and ((k/2) + 1, 1) . But if
f is constant on this self-converse cycle z', f is not a tournament . Thus there
are no tournaments fixed by a if a has any even cycles, and (5 .2.1) is established .

To complete the proof of the theorem, it remains to demonstrate (5 .2.2) .
If z k is an odd cycle, it induces k — 1 cycles of pairs in x[21 . These k — 1
cycles consist of (k — 1)/2 pairs of converse cycles. Recall that any tourna-
ment f fixed by a is constant on the cycles of a'. Therefore the elements of
exactly one cycle of each of these (k — 1)/2 pairs must be included in a tourna-
ment fixed by a. Then the contribution to t(j) due to all the odd cycles of a
is jk(k — 1)/2 summed over odd k .

Now we consider two cycles zm and zn of a and the pairs in XE2' which
have one point in each . In determining the cycle index Z(Sp2I), we saw that
two such cycles induce 2(m, n) cycles of objects (ordered pairs) in X121 . These



126

	

5 DIGRAPH S

latter cycles consist of (m, n) pairs of converse cycles . The objects in just on e
of each of these pairs of converse cycles must be included in a tournament
fixed by a. Therefore the contribution to t(j) of all such pairs zn, and z„ with
m ~ n is >m j„ j„ (m, n) . The contribution of pairs of cycles of the same
length is Ek(2 ). On adding these three contributions we have formula (5 .2.2)
for t(j) .

	

//

The values of T(p) with p < 12 taken from [M2, p. 87] are displayed i n
Table 5.2.1 .

TABLE 5.2 . 1

THE NUMBER OF TOURNAMENT S

P T(p)

1 1
2 1

3 2

4 4

5 1 2

6 56

7 456

8 6 880
9 191 536

10 9 733 056
11 903 753 248

12 154 108 311 168

A digraph is strongly connected or strong if every pair of points are mutuall y
reachable by directed paths . It is well known [HNC1, p . 306] that a tourna-
ment is strong if and only if it is hamiltonian, that is, it contains a spannin g
directed cycle . The strong tournaments with p = 5 points are now shown ,
using the clever device of Moon [M2, p . 92] that whenever an arc is missin g
it is oriented according to gravity from the higher point to the lower one .

The number of strong tournaments is easily expressed in terms of the
total number of tournaments by means of generating functions ; Moon
[M2, p. 88] . The proof requires a few definitions . A strong component of a
digraph D is a maximal strong subgraph . The condensation D* of D has the
strong components of D as its points, with its arcs induced from those of D .
As noted in [HNC1, p . 298], the condensation of any tournament is a transitiv e
tournament, that is, a complete order.
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0

0

2c)

Figure 5.2. 2
The strong tournaments of order 5 .

Theorem Let T(x) and S(x) be the ordinary generating functions for
tournaments and strong tournaments respectively . Then

S(x) =	
T(x)

	

(5 .2.4)
1 + T(x) .

Proof To obtain S(x), let ;,(x) be the ordinary generating function fo r
tournaments with exactly n strong components. Then by the above observa-
tions, T"(x) = S"(x) and T(x) = ET"(x), proving (5 .2.4) .

	

/ /

5.3 ORIENTATIONS OF A GRAPH

An orientation of a graph G is an assignment of an arrow to every line of
G, i .e ., an ordering of its point pair. An oriented graph is a digraph in which
no pair of points are joined by a symmetric pair of arcs . Thus every orienta-
tion of a graph is an oriented graph . Every graph G has an invariant o(G) ,
the number of different orientations of G . One quickly verifies that o( C3) = 2,
o(C4 ) = o(C5 ) = 4, and o(C 6) = 9.

0	 0

Figure 5 .3 . 1
The orientations of the cycle of order 4 .
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Our purpose here is to develop an enumeration method [HP2] fo r
determining the number o(G) for a given graph G. To do this we need onl y
generalize some of the observations made in the previous section . There we
found the number T(p) of tournaments of order p, which is simply o(Kp),
the number of orientations of the complete graph .

As in the case of Kp , a formula for o(G) can be obtained by applyin g
Burnside's Lemma. The expression obtained can be simplified by using a
special cycle index in two variables . Suppose F(G) acts on X = {1, 2, . . . , p}
as usual. It is convenient to define the digraph D(G) of a graph G. The points
of D(G) are those of G and the set U of arcs of D(G) are all ordered pairs (i, j )
such that points i and j are adjacent in G . Thus any orientation of G is obtained
by choosing just one from each pair of symmetric arcs in D(G) .

The reduced ordered pair group F(G)f2l acts on all ordered pairs (i, j )
with i and j in X and i j, whether or not i and j are adjacent in G. We thu s
require the restricted permutation group F(G) E21 1 U which acts only on the
arcs in U, and denote its cycle index by Z(F(G ) E21 I U). To distinguish between
the kinds of cycles involved here, it is convenient to use the variables tk for
the self-converse cycles and s k for the pairs of converse cycles . Thus by
definition the polynomial Z(F(G) E29 9 U ; s k , tk) displays this distinction. Not e
that as in the case of tournaments, the variables tk arise only from eve n
cycles of length k in the automorphisms of G . The next result follows fro m
the Restricted Form (2.3 .9) of Burnside's Lemma .

Theorem The number of orientations of a graph G is

o(G) = Z(F(G) E?) t U ;

	

2, 0) .

	

(5 .3 .1 )

Note that the radical 2 disappears on substitution because convers e
cycles occur in pairs . Furthermore, the rather unusual figure counting serie s
consisting entirely of 0 serves the purpose of making quite certain that n o
symmetric pair of arcs can occur .

Because of the intractibility of the cycle index involved in (5 .3.1), we can
calculate the number o(G) in principle only for an arbitrary graph G . However .
an exact formula can be obtained when G = C p , the cycle of order p. Since
T(Cp) = F 1 (Cp) = D p , the dihedral group, we can modify formula (2 .2.11 )
for Z(Dp) to obtain Z(F(Cp ) E21 I U ; sk ) . Since the variables t k are contributed
only by reflections, we hav e

((

	

)[2]1

	

1

	

2p i d

	

isz1t2

	

if p is odd
Z F Cp U ; S k , t k )

_ ~p d~
cp(d)sd + 1(s2 + s5-2 t2) if p is even .

(5 .3 .2)
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Hence we can write

0
o(CP) =

	

9(d)
22Pid +

p

	

2(P-4)/2di p

if p is odd
if p is even .

(5 .3 .3 )

Our approach can also be modified to count oriented graphs [H6], but
this result will arise as a special case of the enumeration of mixed graphs
which is given in the next section .

5.4 MIXED GRAPHS

A mixed graph can contain both ordinary and oriented lines . For example ,
the graph in Figure 5 .4.1 is a mixed graph with two ordinary and three
oriented lines . An ordinary graph may be regarded as a mixed graph wit h
no oriented lines, and an oriented graph as a mixed graph with no ordinary
lines. Further, any digraph may be considered as a mixed graph by changing
each symmetric pair of lines to an ordinary line .

Our object is to derive a formula which enumerates mixed graphs on p
points with respect to both the number of ordinary and oriented lines [HP7] .
Let mpqr be the number of mixed graphs with p points having q oriented lines
and r ordinary lines. Then the polynomial mp(x, y) which enumerates mixe d
graphs with p points according to both the number of ordinary and oriente d
lines is defined by

mP (x , Y) = mpq xgyr ,
q,r

(5.4 .1 )

where q + r < (2) . From Figure 5 .4.2, we see that for p = 3 the formula i s

m3(x, y) = 1 + x + 3x 2 + 2x 3 + y + 2xy + 3x2y + y2 + xy2 + y3 . (5.4.2)

For the derivation of the formula for mp(x, y), we use a slight modificatio n
of Polya's Theorem in which two kinds of figure counting series are employe d
together with the special cycle index in two variables of the previous section .
In the notation of Section 5 .3, there is the identit y

r(KP ) 121 I U = S .

	

(5 .4 .3)

Figure 5.4 . 1

A mixed graph of order 4 .
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o°,/o/o/ao\/\

	

,

/0t0 A

/,A A
/oA A

Figure 5 .4 . 2

The 16 mixed graphs of order 3 .

Thus Z(Sp2] ; S k , t k ) is the cycle index of the reduced ordered pair group Sp' '
in which the variables Sk are used for pairs of converse cycles and tk for self-
converse cycles. We will see that on replacing each Sk in this expression by
(1 + 2xk + yk)"2 and each tk by 1 + yk12 , the polynomial mp(x, y) is obtained .

Theorem The counting polynomial for mixed graphs of order p is given b y

	

mp(x, y ) = Z(Sp2] ; ( 1 + 2x + y ) '12 , 1 + y 112 ),

	

(5 .4 .4 )

where

Z(42 ; Ski t k ) = 1	 -"	 J S (k – 1 ).ik

p (I) 1 lk'kJk kod d

x

	

2

	

Jk

	

2k (2 k )

	

2 ( r ,w)Jrjw(sr tk)

	

Sk

	

S (r , w ]
keven

	

k

	

r< w

As an example we give some of the details for p = 3 . First we have the
cycle index formula

Z(S32] ; Sk, tk) _ (1/3!)(s6 + 3s2t2 + 2s3) ,

Substituting the figure counting series (1 + 2x + y)112 and
we obtain

m3(x, y) = 6'-((l + 2x + y) 3 + 3(1 + y)(1 + 2x 2 + y2 )

+ 2(1 + 2x3 + y3 ))

(5 .4 .5)

(5.4.6)

1 +y 1/2 ,

(5.4.7)
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which agrees pleasantly with (5 .4.2) and the mixed graphs shown in Figur e
5.4.2 .

Equation (5 .4.5) needs no comment except to notice that it is obtaine d
from (5 .1 .5) by modifying it in accordance with the part of the proof of (5 .2.1 )
where it is shown that each even cycle of a permutation in S p induces one
self-converse cycle .

Here is a brief sketch of the proof of (5.4.4). As usual the power grou p
02' acts on the functions in YX'2' . Since each such function f represents a
digraph with say q oriented lines and r symmetric pairs of arcs, f can also be
regarded as a mixed graph with q oriented lines and r ordinary lines . Ob-
viously, any two functions in YX'2' are in the same orbit of the power group i f
and only if their mixed graphs are isomorphic. Finally, the functions ar e
assigned weights in the usual fashion and the weighted version (2 .3.10) of
Burnside's Lemma is applied to obtain (5 .4.4).

The idea of 1 + 2x + y is that the term 1 stands for nonadjacency of th e
point pair, while 2x indicates the two possible orientations, and y an un-
directed line. The radical in (1 + 2x + y)

1
/
2 vanishes in mp(x, y) because

every variable Sk occurs only with even powers since converse cycles neces-
sarily appear in pairs . Similarly, the 1 + y stands as usual for no line or an
ordinary line, as oriented lines simply are taboo for self-converse cycles .
The radical in 1 + y112 also vanishes in mp(x, y) because, as shown in th e
only term of (5 .4.5) containing tk , k is even. This in turn holds since every
self-converse cycle has even length .

	

//

The counting polynomials g p(x) and dp(x) for graphs and digraphs have
already been derived, and the polynomial op(x) for oriented graphs wa s
found in [H6] . Observe that each of these polynomials is easily obtaine d
from mp(x, y), which is thus a simultaneous generalization of three previou s
enumeration formulas :

dp(x) = mp(x, x 2 ),

	

op(x) = mp(x, 0), gp(y) = mp(0, y) . (5 .4 .8 )

For p = 3, we find from (5 .4.7) that :

d 3 (x) = m 3(x, x 2) = 1 +x+4x 2 +4x3 +4x4 +x5 + x6 ,

o 3 (x) = m3(x, 0) = 1 + x + 3x 2 + 2x3 ,

g 3(y) = m3(0, y) = 1 + y + y 2 + y3 . (5.4.9)

These are quickly verified by Figure 5 .4.2 .
A complete digraph has either an oriented line or a symmetric pair of

lines joining every pair of points . The digraph in Figure 5 .4.3, is a complet e
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Figure 5 .4 .3

A complete digraph of order 5 .

directed graph on five points with three symmetric pairs of arcs and seve n
oriented lines .

Let cpgr be the number of complete digraphs with p points having exactl y
q oriented lines and r symmetric pairs . Then the polynomial cp(x, y) which
enumerates complete digraphs with p points according to both the numbe r
of oriented lines and symmetric pairs is defined by

cp(x, y) _ >cpgrxgyr

	

(5 .4.10)

where q + r = (2) .
From Figure 5.4.4, we see that for p = 3 the formula is c 3(x, y) = 2x3 +

3x 2y + xy2 + y3 .
The enumeration formula for cp(x, y) is easily obtained by modifying th e

formula for mixed graphs. The integer 1 in each of the two figure counting
series (1 + 2x + y) 112 and 1 + y'12 represents the possibility of having n o
line joining a pair of points . Since in a complete digraph there is alway s
either an oriented line or a symmetric pair joining a pair of points, th e
appropriate figure counting series are (2x + y)"2 and y 1 " 2 .

Figure 5 .4 .4

The complete digraphs of order 3 .
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Corollary The enumeration polynomial for complete digraphs on p point s
is given by

cp(x, y) = 2(Sp21 ; (2x + y)"2 , y'12) .

	

(5 .4.11)

An immediate consequence of this corollary is that the number o f
tournaments on p points is

T(p) = cp(1, 0) .

	

(5 .4.12)

Using (5 .4 .12) and (5.4.5), it is a matter of routine manipulation to obtain
(5 .2.1) and (5.2.2) explicitly .

The total number cp of complete digraphs, regardless of the number o f
oriented lines or symmetric pairs, i s

cp = cp(1, 1) .

	

(5 .4.13)

For example, Figure 5 .4.4, shows that c 3 = 7 .
Using the formula (5 .4.5), we obtain the following expression for c p .

Theorem The number of complete digraphs of order p i s

	

c = 1	 	 p
I

	

p
	 3 a0p

	

~ 1Iklki k (5.4.14)

where

p ( [k —	 . 541 5a( j) =

	

2

	

Jk + k
(Jk\\

+ E (r , s)I.JS • (

	

)
k=1

	

r< s

The first five values of cp are :

p

	

1 2 3 4 5
cp

	

1 2 7 42 582

EXERCISES

5.1 The number of complete digraphs of order p equals the number o f
oriented graphs of order p .

	

5.2 Digraphs whose points all have outdegree 2 .

	

(C. P. Lawes )

5.3 Point-symmetric digraphs of order p, a prime . (Hint : use the method
of Turner [Ti] for graphs.)
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5.4 The number of tournaments of order p > 5 which admit exactly on e
hamiltonian cycle is

p-s m

	

p—k—3 k— 1

	

p—k—4 k— 1
1 + E

	

2p-k-n-a2

	

+
k=1n=0

	

n

	

n + 1

	

n

	

n

where m = min(k — 1, p — k — 3) . (Douglas [D2] )

5.5 Write an explicit formula for the cycle index Z(Sp), and use it to get th e
counting polynomial for relations of order 4 .



A good notation has a subtlety and suggestiveness
which at times make it seem almost like a live teacher .

Bertrand Russel l

Chapter 6 POWER GROUP
ENUMERATION

If c(x) is a counting series which enumerates the elements of a set Y and A
is a permutation group with object set X, then we saw in Chapter 2 tha t
Polya's theorem provides a method for expressing the series C(X), whic h
enumerates the weighted orbits in Yx of the power group EA , in terms of
Z(A) and c(x). There is a large class of problems for which it is essential t o
be able to enumerate orbits in Yx of the power group BA when B is not the
identity group. A method for accomplishing this generalization of Polya' s
theorem was first found by deBruijn [B5] . In this chapter we shall discuss a
more natural alternative method [HP4] which simplifies the computatio n
by eliminating superfluous differential operators and displaying explicitl y
the permutation group which acts on the functions, namely the power group .
For this reason, we prefer to refer to deBruijn's result as the Power Grou p
Enumeration Theorem. The applications include the enumeration of self-
complementary graphs and digraphs, graphs with colored lines, finite
automata, and self-converse digraphs .
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6.1 POWER GROUP ENUMERATION THEOREM

Consider the power group BA with object set Yx where X = {x 1 , 	 x }
and Y = { y , . . . , y, j . We begin by determining a formula for the number of
orbits of BA . To this end, we first write, using only the definition of the cycl e
index,

1
Z(BA ) = IA] IBI

YE
f skk (v) .

	

(6.1 .1 )

For each permutation y = (a ; /3) in BA, the formulas forjk(y) in terms of th e
jk(a) and jk(/3) are given by the next two equations . We first show tha t

jk(a)
Mot ; /3) = II (Esis(fl)) ,

k= 1 si k

where (LSlk sjs(/3))'k(a) = 1 whenever j k(a) = 0 .
For t > 1, we then use mobius inversion to obtain

Jr(a ; ,3) = (1/ t ) E u(t/s )J1(as ; )6S ) .

	

(6 .1 .3)
si t

To justify (6 .1 .2) and (6.1 .3), consider any permutation y = (a ; /3) in the
power group BA . Let zk be a cycle of length k in the disjoint cycle decomposi-
tion of a . Let S be the set of k elements of X which are permuted by Zk .

Then (z k ; )6) is a permutation which acts on Y S . Define c k(/3) as the number o f
functions in Ys which are fixed by the permutation (z k ; /3). Then clearl y

m

Ma ;

	

=

	

(c)((/3))'k(a),

	

(6 .1 .4)
k= 1

where (ck(/3))'k(a) = 1 whenever jk(a) = 0 .
A function f which is fixed by (zk ; /3) must assume all of its functiona l

values in the set of elements permuted by a single cycle z s of length s in ,the
disjoint cycle decomposition of /3. Suppose for such a function that f(x) = y
for some x in zk and y in z s . Then (zk ; /3)sf (x) = /3sf(zkx) = f (4x). But since f
is fixed by (z k ; /3) it is also fixed by (zk ; /3) s . Therefore (zk ; /3)f(x) = f (x) ,
and so y = f (zkx) . Similarly for all i, we have y = f (zkx) . Now f(z kx) = /3 -1 y

and so the equations involving x and y also hold for zkx and /3 - l y. We now
focus on the cycle zs containing element y and consider the part (z k ; z s ) o f
(zk ; (3) . Since a further application of function f must be compatible with th e
cycle lengths k and s, it is easy to see that sik . Since element y in z k is arbitrary ,
there are exactly s such functions for each cycle z s . Thus c k (/3) = EsIk sjs(/3 )
and on substituting it in (6 .1 .4), we obtain (6 .1 .2) .

(6 .1 .2)
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Now note that if the contribution of a permutation a to Z(A) is fk=
skk(a )

then that of a t is
m

k(a )
1 j

Sk/(
k/(k,t )

k= 1

Since (a ; /3) k = (ak ; /3k), we have from (6.1 .5) ,

(at ; /3t ) =

	

(k , t)jk(a ; /3)

	

(6 .1 .6)

where the sum is over all k such that k = (k, t), i .e ., all divisors k of t . Thus

j l (a` ; [3 t ) =

	

kjk(a ; fl)

	

(6 .1 .7)
ki t

and mobius inversion yields (6 .1 .3). The use of (6 .1 .2), (6 .1 .5), and (6 .1 .3)
gives j t(a ; /3) in terms of the jk(a) and jk (/3) .

The next theorem is used so often that it will be convenient to refer to it
by its initials, PGET. It enables us to determine the number of orbits of th e
power group BA , given Z(A) and Z(B) . The proof can be made by applying
Burnside's Lemma (2 .3.3) to formula (6 .1 .2) or as in [HP4] by using Z(BA )
together with Polya's Theorem (2 .4.6). But we do not include the detail s
here since it is the constant form of the result and is generalized in the powe r
series form of the PGET which is developed below .

Theorem (Power Group Enumeration Theorem, constant form) The
number of orbits of functions in YX determined by the power group BA is

N(BA) = I B I -1 E Z(A ; c 1(f), . . .

	

, cm(/3))

	

(6 .1 .8 )
/ie B

where

ck(/3) =

	

(6 .1 .9)
si k

We wish to emphasize that the constant form of the PGET amounts to an
application of Burnside's Lemma to the power group .

To illustrate, we apply (6 .1 .8) with A = D4 , the dihedral group of degree 4 ,
and B = S 2 . The result may be interpreted in numerous ways, but perhap s
the necklace context provides the most insight . The number of necklace s
containing exactly four beads in which the available beads are of two inter -
changeable colors is given by the result of this substitution . From (2.4.13)
we have

Z(D4) = *(si + 3s2 + 2ss2 + 254 ) .

(6 .1 .5)
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Figure 6.1 . 1
The four-bead necklaces with two interchangeable colors .

If fi in S 2 is the identity permutation, then from (6 .1 .9), c k(/3) = 2 for all k.
If 13 is the transposition, then c k(/3) is 0 or 2 according as k is odd or even .
From the PGET (6 .1 .8) we have

N(4 4 ) = I{Z(D4 ; 2, 2, 2, 2) + Z(D4 ; 0, 2, 0, 2)} .

	

(6 .1 .10)

We find at once that Z(D4 ; 2, 2, 2, 2) = 6 and Z(D4 ; 0, 2, 0, 2) = 2 and
therefore from (6 .1 .10) the number of orbits of S°° is 4 . That is, there is on e
necklace in which all four beads with interchangeable colors have the sam e
color ; there is one in which exactly three beads have the same color and there
are two in which exactly two beads have the same color ; see Figure 6.1 .1 .
The number of such classes of necklaces with n beads and m colors is simply
the number of orbits of Sm n

6.2 SELF-COMPLEMENTARY GRAPHS

We shall now illustrate the constant form of the Power Group Enumera-
tion Theorem by using it to determine the number of self-complementar y
graphs with p points . The complement of a graph G, denoted G, has the same
points as G, and two points are adjacent in G if and only if they are no t
adjacent in G. Then G is self-complementary if G and G are isomorphic .
Recall from [HI, p . 24] that every self-complementary graph G has p 0
or 1 (mod 4) points since the number of lines in G must be (), an integer .
Aside from the trivial graph, the three smallest self-complementary graph s
include the 4-point path and the 5-point cycle .

Read [R6] showed how to compute the number of self-complementary
graphs by first applying deBruijn's theorem [B5] to count graphs modul o
complementation . For this purpose we consider two graphs as equivalent
up to complementation if they are isomorphic or one is isomorphic to th e
complement of the other. We now express this equivalence in terms of a
power group .

Let the pair group S (p2) act on X (2) , the collection of all 2-subsets of
X = { 1, 2	 p}. and let S 2 have object set Y = {0, 11 . Each function f
from X (2) to Y represents a graph G whose point set is X and in which the



6.2 SELF-COMPLEMENTARY GRAPHS

	

139

points i and j are adjacent whenever f({i, j}) = 1 . Thus the elements 0, 1 of Y

are used to indicate the absence or presence of a line respectively . Consider the
power group B A with A = Sp ) and B = S 2 . Clearly the graphs of two func-
tions are equivalent up to complementation if and only if the two function s
are in the same orbit of this power group BA . For if a permutation (a ; (0)(l) )
in this group sends function f to g, thenfand g represent isomorphic graphs .
And if (a ; (01)) sends f tog, then these two functions represent complementar y
graphs. Hence, the number a p of graphs up to complementation with p
points is the number of orbits of this power group . Therefore we can appl y
the constant form of the PGET with A = S(p2) and B = S2 . Consider the
two permutations (0)(1) and (01) of S 2 . If /3 = (0)(1), then j l (/3) = 2 and

= 0 for s > 1 ; hence ck(/3) = 2 for all k . For /3 = (01), we have j2 (/3) = 1
and js(/3) = 0 for s 2 ; hence we have c k(/3) = 2 when k is even and c k (/3) = 0

when k is odd. Thus from formula (6 .1 .9), the number of graphs with p
points up to complementation i s

ap = 1{Z(S(p2) ;2,2, . . .) + Z(S(p2) ;0,2,0,2, . . .)} .

	

(6 .2 .1 )

Read then observed that 2a p is the number of graphs with p point s
provided that a graph is counted twice if self-complementary and just onc e
if not. It follows that the number g p of self-complementary graphs satisfies

gp = 2ap — g p

	

(6 .2 .2)

where gp as in (4.2.1) is the number of graphs with p points . From Polya' s
result (4 .1 .8) we know that gp = Z(S (p2) ; 2, 2, . . . ). Substituting in (6.2.2) we
find the formula for g p given in the next theorem .

Theorem The number g p of self-complementary graphs with p points i s

gp=Z(S(p2) ;0,2,0,2, . . .) .

	

(6 .2 .3)

Because p - 0 or 1 (mod 4) for gp > 0, these are the only values of p in
Table 6.1 .1 taken from [R6] .

TABLE 6.1 . 1

THE NUMBER OF SELF-COMPLEMENTARY GRAPH S

p

	

4

	

5

	

8

	

9

	

12

	

13

	

16

	

1 7
k p

	

1

	

2

	

10

	

36

	

720

	

5 600

	

703 760

	

11 220 000



140

	

6 POWER GROUP ENUMERATIO N

Formula (6.2.3) is specialized for these two cases as follows

1

	

n !
g4n	 	 2 e(i )- -

n ! u)
flkikjk !

and

_4n+ — 1

	

n !	 2~( .i)+ Eikg 1 —
n ! (j) nkik

jk )

where the sums are over all partitions (j) of n and
n

	

n

	

c(j) = 2 E jk(kjk — 1) + 4

	

(r — t)jrjt .

	

(6.2 .6)
k= 1

	

1 <r<t< n

The complement D of a digraph D has the same points as D and u i s
adjacent to v in D if and only if u is not adjacent to v in D . The number dp of
self-complementary digraphs may be found by the same approach as above .

Theorem The number dp of self-complementary digraphs with p points i s

dp = Z(Sp21 ; 0, 2, 0, . . . ) .

	

(6.2.7)

On considering the number den of digraphs on an even number of point s
we find, following Read, the curious fact tha t

	

d2n = g4n .

	

(6 .2 .8 )

However no one has yet found a natural 1—1 correspondence between thes e
self-complementary graphs and digraphs . Thus d4 , d6 and d8 can be found b y
using Table 6 .1 .1 for p = 8, 12, 16 . These and other small values are displayed
in Table 6 .1.2 .

TABLE 6 .1 . 2

THE NUMBER OF SELF-COMPLEMENTARY DIGRAPHS

p 2 3 4 5 6 7 8
d, 1 4 10 136 720 44 224 703 760

Formula (6 .2.7) is specialized for the odd case as follow s

= 1 ~	 n	a2n+ 1	 	 .	 2,u)+2Ejk

	

(6 .2.9 )—
n! u) flkikl k !

where the sum is again over all partitions (j) of n .

,(6.2.4)

(6.2.5)
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6.3 FUNCTIONS WITH WEIGHTS

There are many enumeration problems in which integral weights ar e
assigned to the functions so that each function in an orbit of the power grou p
has the same weight . We seek to express the answer as the generating func-
tion

C(x)=Co+C 1 x+C 2 x2 + . . .

	

(6.3.1 )

in which C . is the number of orbits of weight i .
Now consider the power group BA acting on Yx where A, X, and B are

finite, but Y may be countably infinite (to allow for all nonnegative integer s
as weights). Let w be a function from Y into the set {0, 1, 2, . . . } . As usual w
is called a weight function and for each f in Yx we define the weight off,
denoted w(f ), by

w(f) = E w(f(x)).

	

(6 .3 .2)
xeX

Since X is required to be finite, the sum in (6 .3.2) is defined . If for every orbit
of BA , all functions in that orbit have the same weight, then we can define
the weight of an orbit to be the weight of any function in it . Furthermore ,
if for each i = 0, 1, 2, . . . , the number of elements in Y which have weight i

is finite, then we can ask for the number of orbits of any specified weight .
Thus we regard two functions as the "same" if and only if they are in the same
orbit. Let Ck be the number of different functions of weight k determined b y
the power group . Then the determination of the series C(x) of (6 .3 .1) provides
the number of orbits of given weight .

We now seek to determine conditions that will ensure that functions i n
the same orbit of BA have the same weight . To this end, let Y = w -1 (i) be the
set of all elements in Y with weight i . We have seen that each Y must be finite
in order that there be a finite number of functions of any specified weight .
By B( Y) is meant that subset of Y consisting of all objects My), /3 e B, y e Y .
Now the condition required may be stated as follows .

Lemma All functions in the same orbit of the power group BA have equa l
weight if and only if B( Y) = Y for each i = 0, 1, 2, . . . .

Proof For the sufficiency, suppose f and g are in the same orbit of BA .

Then for some (a ; )6) in BA , we have (a ; f3) f = g so that /3f(ax) = g(x) for
all x in X. Note that B(Y,) = Y implies w(f3f (ax)) = w(f (ax)). Therefore

w(g) = E w(l3.f (ax)) = E w(.f (x)) = w(f) .
xeX

	

xeX
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For the necessity, suppose there is an element y in Y and a permutation /3
in B such that w(y) w(/3y) . Let f and g in YX be defined by f(x) = y and
g(x) = fly for all x in X. Then f and g are in the same orbit of BA , but w(f) #

w(g) .

	

//
From now on we assume that the condition of this lemma is satisfied ,

namely that for all i, B( Y) = Y . Then each permutation /3 in B may be writte n
as a product

(6 .3 .3 )

where for each y in Y, /3(y) = /3i(y) if y E Y .
To obtain the generating function C(x), we now need only modify the

variables c k(/3) which appear in the statement (6 .1 .8) of the PGET . Let y =
(a ; /3) be any permutation in the power group BA . Suppose zk is any cycle of
length k in the disjoint cycle decomposition of a. Again let S be the set o f
elements of X which are permuted by Zk . For each i = 0, 1, 2, . . ., defin e
c;`(/3) as the number of functions f in YS which are fixed by the permutatio n
(zk ; /3) and which have

E w(f (x)) = i .

	

(6 .3 .4)
xeS

For convenience let us write the generating functio n

	

ck(N, x) = E c'(N)xi .

	

(6 .3.5)

Note that c k(/3, 1) = c k(/3) as defined in (6.1 .9) . Then the desired generatin g
function C(x) is given by

C(x) = IBI -1 E Z(A ; c 1 (/3, x), c 2 (/3, x), . . . , c„,(/3, x)) .

	

(6 .3.6)
/3eB

But using the same approach as made in the derivation of (6 .1 .2) for
j 1(a ; /3), we have

c l(f3, x) = Eji(fi)xi

	

(6.3.7 )

c2([3 , x) = E

	

+ 2j2(/3 i))
x2i

	

(6 .3.8)

C 3(fl

	

, x) = E (MP) + 3J3(/'i))
x3i ,

	

(6 .3 .9 )

and in general

Ck(l3 , x) =

	

E Sjs(fi) xki

	

(6 .3 .1 0)
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Collecting these observations, we have the following result .

Theorem (Power Group Enumeration Theorem, power series form) The
series C(x) which enumerates by weight different functions as determined b y
the power group BA is

C(x) = IBI ' E Z(A ; c 1 (/3, x), c 2(/3, x), . . . , c m(/3, x))

	

(6 .3.11 )
IIEB

where

ck(f, x) =

	

E sjs(/3i) xki .

	

(6 .3 .12)
i

	

sl k

Analogous to the remark after the statement of the constant form of th e
PGET, this power series form consists essentially of an application o f
Polya's Theorem to the cycle index of the power group .

Polya's Theorem is immediately obtained from this theorem by taking B
as the identity group on Y. Then with /3 the identity permutation on Y,
j l (/3 i) = I Yi I for each i and js(/3 i) = 0 for all s 1 . Thus Esik sjs(/ii) = I Yi l
for each i, and c k (/3, x) = L I Yi lxki for each k = 1 to in . Therefore writing
c(x k) for ck(/3, x), we have

C(x) = Z(A ; c(x), c(x 2 ), . . . , c(xm )) .

	

(6 .3 .13)

The difference between the expression for C(x) in the power series form of the
PGET and that involving partial derivatives given in deBruijn's statement
of the same result is merely formal, as shown in [HP4] . It is just a matter of a
change in notation and routine algebraic manipulations (Exercise 6 .15) .

To illustrate, we return to the necklace problem discussed in Section 6 .1 .
Let D4 act on X = {1, 2, 3, 4} and suppose Y = {1, 2, 3} with w(1) = 0 and
w(2) = w(3) = 1 . The group B shall consist of the permutations (1)(2)(3)
and (1)(23) . Then the power series form of the PGET may be applied to obtai n
the series C(x) and we can interpret the coefficient of x k in this series as the
number of four-beaded necklaces which have 4 — k beads of color 1 and k
beads of the interchangeable colors 2 and 3 .

In applying the theorem, first consider /3 = (1)(2)(3) ; then ck(/3, x) =
1 + 2x k for each k . When /3 = (1)(23) then ck(/3, x) = 1 if k is odd, and
ck (/3, x) = 1 + 2xk if k is even. Using formula (6 .3.11) in the theorem, we have

C(x) = i{Z(D4 , 1 + x) + Z(D4 ; 1, 1 + 2x2 , 1, 1 + 2x4)} .

Substitution into Z(D4) yields

C(x) = 1 + x + 4x 2 + 3x3 + 4x4.
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03

	

1

02

	

2

Figure 6 .3 . 1

Necklaces with one fixed color and two interchangeable colors .

We now verify in Figure 6 .3 .1 that the coefficient of x 3 in the precedin g
equation is 3 by writing numbers 2, 3 near the points for the interchangeabl e
colors and 1 for the fixed color .

Note that the coefficient of x 4 in the last equation is the number of four-
beaded necklaces with two interchangeable colors. We have already verified
in Figure 6.1 .1 that this number is 4 .

The PGET is readily modified to handle problems in which the weight
function assumes values in any commutative ring which contains th e
rationals, although there does not appear to be an abundance of intuitivel y
interesting problems at this level of generality .

6.4 GRAPHS WITH COLORED LINES

Read [R7] gives the generating function for the enumeration of graph s
with p points whose lines are colored with m interchangeable colors . The
power series form of the PGET provides a simple approach to the problem
of determining this function .

Let A be the pair group S(p2) with object set X (2) . Let Y = {0, 1, . . . , m}

and consider the symmetric group S,„ + 1 acting on Y. For B we take the sub -
group of Sm+ which fixes the element 0 of Y so that Z(B) = s 1 Z(S,,,) . Next we
define a weight function w from Y into the set {0, 1} with w(y) = 0 if and onl y
if y = 0. Then each function .f from X (2) to Y represents a graph with f -1 (i )

lines of "color i" for i = 1 to in. Further, the weight W(f ), as defined in (6 .3.2)
is the number of lines in the graph represented byf . It follows that the generat -
ing function NP(x) which we seek is obtained by applying (6 .3.11) to thi s
power group B A .

To illustrate, we show some of the details for in = 3. In accordance wit h
the notation above . we have Yo = {0} and Y1 = {1, 2, 3} . For each 13 in B
we must compute ck(J3, x) as given by formula (6 .3 .10). Recall that for i = 0, 1 ,
the coefficient of x k ` in ck(13, x) is ESlk sjs(/3 1) . There are three cases, one fo r
each type of permutation .

2

0

0 0

2

2 2

o 2

03
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Case i /3 = (0)(1)(2)(3) .
We have /30 = (0) and M. = (1)(2)(3) . Therefore j i (/3 0 ) = 1 and j i (/3 1 ) = 3 .

So c k(/3, x) = 1 + 3x'` for all k .

Case ii /3 = (0)(12)(3 )
Since /3 0 = (0) and /3 1 = (12)(3), we have j,(/3o) = 1, j,(f3 1 ) = 1, and

j 2(fl 1 ) = 1 . Therefore > s ~ k sj3 (/3 1 ) is j l (/3 1 ) or (j i (/3 1 ) + 2j2 ([3 1 )) according
as k is odd or even . Hence ck (/3, x) is 1 + x k or 1 + 3x' according as k is odd
or even .

Case iii /3 = (0) (123)
Since /3 0 = (0) and /3 1 = (123) we have j 1 (/3 0 ) = 1 and j3 (/3 1 ) = 1 . There-

fore Ltk sj s(/3 i ) is 0 or 3J 3(/ 1 ) according as 3 ,I/ k or 31k . Hence c k (/3, x) is 1
or 1 + 3x k according as 3 ,1' k or 31k .

If /3 = (0)(13)(2) or /3 = (0)(23)(1), then, of course, c k(/3, x) is given by
Case ii . From (6.3.11) we now hav e

1\p(x) = 6 (Z(Sp ) ; 1 + 3x, 1 + 3x 2 , . . . )

+ 3Z(Sp2) ; 1 + x, 1 + 3x 2 , 1 + x3 , . . . )

+ 2Z(SQ2) ; 1, 1, 1 + 3x 3 , . . . )) .

Therefore, for p = 3,

N3(x) = 1 + x + 2x 2 + 3x3 .

In Figure 6 .4.1 we illustrate this equation by showing all the 3-poin t
graphs in which the lines are assigned three interchangeable colors a, b, c .

0

	

0

	

0	 0
0

	

0

1

	

+

	

x

	

+

	

2x 2

	

+

	

3x 3
0

	

0

b

c

Figure 6.4 . 1
Graphs with lines of interchangeable colors .
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6.5 FINITE AUTOMATA

Harrison [H15] first solved the problem of finding the number of differen t
automata. With the aid of the PGET, the problem of counting automat a
with specified initial and final states can also be handled routinely, as i n
[HP9] . To set the stage, we enumerate ordered pairs of functions with respec t
to the product of two power groups . Finite automata are then concisel y
defined as certain ordered pairs of functions . We review the enumeration o f
automata in the natural setting of the power group, and then extend thi s
result to provide for initial and terminal states .

To develop the enumeration theorem for ordered pairs of functions ,
let B 1 and B2 be permutation groups . Let A 1 = C 1 x D 1 and A2 = C2 x D 2

be two products of groups where for i = 1, 2 the degrees of C, and D i are c,
and di respectively . Using formula (4 .3 .10) to get the cycle index of the Carte -
sian product of two groups, equation (6 .1 .2) for the number of objects fixed
by a given permutation in the power group, and Burnside's Lemma (2 .3 .3) ,
we can obtain the next theorem .

Theorem The number of orbits determined by any subgroup F of
(B " x Di ) x (Bz 2 D2 ) is

2

	

c,

	

d ;

	

jp( y,)j q( b i)(p .q )
N(F) = )FI — 1* [J 1 f

	

sjs(/3i)

	

(6 .5 .1 )
i=1 p= 1 q= 1 LsI[p,r ]

where the asterisk indicates the sum is taken over all permutations (((-/ 1 , 6 1) ;

PI), ((Y2 , b2) ; /32)) in F .

There are a number of ways in which finite automata can be defined, bu t
the formulation most convenient for our purposes may be expressed i n
terms of ordered pairs of functions . Let X, Y, and S be three sets with cardinal -
ities k, in, and n respectively. The elements of S will be called states ; the sets
X and Y, the input and output alphabets, respectively . An automaton is an
ordered pair of functions (f1 ,, f2 ) with f1 : S x X --* S and f2 : S x X -4 Y.
The map f1 is called the input function and f2 is the output function . In con-
ventional terminology, f1 tells the next state and f2 the output symbol when
the automaton is in any given state and is presented with some input symbol .

Three types of equivalence for automata are described by Harriso n
[H15], but we will treat just one of these types here ; namely isomorphism ;
the others may be handled similarly . Let S k , S,,,, and S„ be the symmetri c
groups with object sets X, Y, and S respectively. Thus there are n states, k
input letters, and in output letters . Two automata (_/ 1 , ./2) and (g 1 , g2 ) are
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called isomorphic if there are permutations a in S„, /3 in S k , and y in S,,, such
that for all s in S and x in X

f1 (s, x) = a - ig1(as, fix)

	

(6 .5 .2)

f2(s, x) = y-'g2(as, /3x).

	

(6 .5.3)

Thus equation (6.5 .2) allows for changing the names of the states, whil e
(6.5.3) admits permuting the input symbols . Figure 6 .5 .1 shows two automata
which represent the same input function under the equivalence relation o f
isomorphism defined above . The symbols 0 and 1 are used for the inpu t
alphabet. Both the two state labels and the two input letters have been inter -
changed .

In order to have an appropriate graph theoretic setting, we require th e
next concept. In a net, both loops and multiple directed lines are permitted ;
see [HNC1, p . 5] . If the outdegree of every point is k, and each of the k lines
from a point is given a different label from the input alphabet X, then such a
net represents the input function of an automaton . We also label the point s
of the net as the states of the automaton at hand .

To further clarify the definition of isomorphic automata given above ,
consider equation (6.5 .2) which defines equivalence for input functions f l
and g 1 . In the labeled net off1 , there is a directed line with input x from eac h
state s to the state f1(s, x). Similarly, in the net of g 1 there is a directed line
with input label fix from each state as to the state gl (as, fix). Thus the permu-
tation ((a, /3) ; a -1 ) in the power group Sn„ x sk sends the input function g 1 to
ft and simply changes the names of the states along with the appropriat e
changes in the input labels on the directed lines .

For the enumeration of automata, we must take

C 1 =C 2 =S,,,

	

D 1 =D2 =Sk ,

	

B 1 =S,,,

	

and

	

B2 =Sm .

Then we apply the constant form of the PGET with F the subgroup of
(S„^ " Sk) x (S ,n,^ " Sk ) which consists of all permutations of the form (((a, 13) ;
a - 1 , ((a, fl) ; y)) . Since the order of F is n !k !m !, the formula is as follows .

and

Figure 6.5 . 1

Two isomorphic automata .
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Corollary The number a(n, k, m) of automata with n states, k input symbols,
and m output symbols i s

	

a(n, k, m) = (1/n!k!m!) E 1(a, /3, a)I(a, /3, y),

	

(6 .5.4)

where the sum is over all permutations in F and
n

	

k

	

Jp( a )Jq(Q)( p, q )

1 (a , /3, y) = fl 1 E S1s(y)

	

(6 .5 .5 )
p = 1 q= 1 sj[p ,q )

Obviously (6.5.4) can be modified further by using the formula for th e
number of permutations in a symmetric group with a given partition .

As an illustration we give some of the details for finding a(2, 2, 1), the
number of automata with two states, two input symbols, and just one output
symbol. Since there is only one output function, formula (6 .5.4) is somewhat
simplified :

2

	

2

	

jp(a)jq(Q)(p ,q)

a(2, 2, 1 )

	

E 1J 1-1 E sjs(a)
p = 1 q = 1 sl[p ,q]

=4(24 +22 +22 +22)=7.

	

(6.5.6)

In an automaton one usually distinguishes one of the states, calling it th e
initial state or source. Further, one may distinguish several other state s

Figure 6 .5 .2
The seven automata of equation (6 .5 .6) .
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called terminal states . Thus to enumerate these automata, we must enumerate
appropriately rooted nets . More specifically, we enumerate nets with on e
initial state and t terminal states . The method involves application of the
power group to the original enumeration of rooted graphs given in [H4] .

The operations on permutation groups of forming the power group ,
product and sum provide the means for an explicit description of the permu-
tation group which accomplishes the enumeration . Let H be the permutation
group

H = {(Et

	

1St)(E1s ..-t-1St)xsk xil

	

(
L m(E 1S .-t-1St) x skisn-t-

	

)

	

1

acting on Ss x x x Ys x x .

Let a(n, k, m, t) be the number of automata with n states, including on e
initial state and t terminal states, k input symbols, and m output symbols .
Let F be the subgroup of H which consists of all permutations of the previ -
ously encountered form (((a, /3) ; a - 1 ), ((a, /3) ; y)) . Then the order of F is
(n — t — 1)! t ! k ! m ! . As before, the number of such automata is given b y
formula (6.5.1) .

Corollary The number of automata with one initial state and t terminal
states is

a(n, k, m, t) = [1/(n — t — 1)!t!k!m!]EI(a,/3,a)I(a,/3,y)

	

(6.5.7)

where the sum is over all permutations in H of the form (((a, )6) ; a -1 ), (a, /3) ;
y)), and I (a, /3, y) is given by (6.5 .5) .

For a simple example, we take the case in which the number m of output
symbols and the number t of terminal states are both 1, and the number of
input symbols is 2 . Then we have

n-2 2

	

Jy( z )ly(P)(p,q )

a(n,2, 1, 1) = [1/(n — 2)!2]E fl f E sjs(a)

	

. (6.5 .8 )
p= 1 9= 1 sI[P, q]

It is now easy to calculate that for n = 2, a(2, 2, 1, 1) = 10. (See Table
6.5.1 and Figure 6 .5.3.) In Table 6 .5.1 the values of a(n, 2, 1, t) are shown fo r

TABLE 6.5 . 1

THE NUMBERS a(n, 2, 1, t )

1

	

2

	

3

	

4

2

	

1 0
3

	

378

	

198
4

	

16 576

	

16 576

	

5 614
5

	

819 420

	

1 226 900

	

819 420

	

206 495
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0

Figure 6 .5 . 3
The ten automata verifying the value of a(2, 2, I, 1) .

small n and t = 1 to n — 1 . The identical entries occur because a(n, 2, 1, t) =
a(n, 2, 1, n — t — 1) for t = 1 to n — 2 . We note that the enumeration given
by the Corollary (6.5.7) entails t terminal states different from the initia l
state . To admit the situation where the initial state is itself one of the termina l
states, one replaces each occurrence of t in (6 .5 .7) by t — 1 . It is just as easy t o
count automata with any number r of initial states and t terminal states ,
as well as any specified number of states which are both initial and terminal .

6.6 SELF-CONVERSE DIGRAPHS

Our object is to derive a formula for the counting polynomial dp(x) which
has as the coefficient of xq , the number of self-converse digraphs with p
points and q lines [HP5] . Such a digraph D has the property that its converse
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digraph D' obtained from D by reversing the orientation of all lines is iso-
morphic to D. The derivation uses Polya's Theorem as applied to the restric-
tion of the power group wherein the permutations act only on 1–1 functions ,
for reasons explained below . By inspection, we find that the counting poly-
nomial d '3 (x) which enumerates the self-converse digraphs with three points i s

d3(x)= 1+x+2x 2 +2x3 +2x' +x 5 + x6 .

	

(6 .6 .1 )

Recall that the complement D of a digraph D has the same set of points a s
D, and in it u is adjacent to v if and only if u is not adjacent to v in D. It is
easy to see that (D)' = D' i .e ., the converse and the complement of a digrap h
commute . This remark accounts for the end-symmetry of the coefficients o f
dp(x) as in (6 .6 .1) for p = 3 .

Two digraphs D 1 and D 2 with the same set of points are equivalent up to
conversion if either D 1 D 2 or D1 = D2 . (Note the analogy to equivalence
of graphs up to complementation .) Our objective now is to find a formula fo r
cp(x), the counting polynomial which enumerates digraphs with p point s
up to conversion . To do this, we must find, as in the case for graphs, th e
appropriate permutation group to which PET may be applied .

Let S 2 act on { 1, 2} and consider the power group SPz acting on x[ 1,2 ) ,
the functions from 11, 2} into X. Observe the natural correspondence betwee n
the elements of x[2 ] (which are ordered pairs of distinct elements in X) and the
1–1 functions in x[ 1,2 ) . Each ordered pair (i, j) in x 2 ' corresponds to the 1– 1
function in X{1,2} which sends 1 to i and 2 to j. Thus we may consider the
restricted power group SPz• where the restriction is to 1–1 functions as acting
on the elements of x[2 ] . More specifically, the permutations of SP z* consist
of those ordered pairs (a ; /3) of permutations a in S2 , /3 in S, such that for an y
(i, j) in X[2] ,

(a ;13)(i,j) = (6.6.2)

if a = (1)(2)

(/3j, /3i)

	

if a = (12) .

0

	

0

	

0

0

	

0

	

0	 0

	

c

Figure 6.6 . 1

The ten self-converse digraphs on three points .
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Now let E2 be the identity group acting on the set Y = {0, 1} . Consider
the power group B consisting of E2 raised to the group Sp2 ` acting on YX[2 '

the functions from XI'] into Y. Each such function f represents a digraph
whose points are the elements of X = { 1, 2, . . . , p}, where i is adjacent to j
whenever f (i, j) = 1 . Thus the elements 0 and 1 of Y indicate the absence o r
presence of arcs .

Let fl and fl be two of these functions, and let their digraphs be D 1
and D2 respectively. Then D1 = D 2 or D 1 D2 if and only if there is a permu-
tation y in B such that yf1 = f2 . This follows from the fact that for y = ((a ; (I) ;
e) the digraph of yfl is isomorphic to D 1 or D'1 according as a is (1)(2) or (12) .

Thus equivalence of digraphs up to conversion corresponds to th e
equivalence of functions in Yx'2' determined by the power group B.

Now by applying PET, which we can do because the base group is E2 ,

we obtain the next result, which is required for counting self-convers e
digraphs.

Theorem The counting polynomial cp(x) which enumerates digraphs u p
to conversion is

cp(x) = Z(Sp2 `, 1 + x) .

	

(6.6.3)

There are formulas which can be used to express the cycle index of any
restricted power group BA' , where the restriction is to the 1—1 function s
which are present. But in the special case A = S2 and B = Sp , a more
explicit formula can be given. For each permutation a in Sp , the partition of a
is denoted as previously by (j) = (j 1, j2 , . . . , jp), where jk is the number o f
disjoint cycles of length k in a. Then the contribution to Z(42 ") of ((12) ; a) is

P

I(a) _ r-I 42,ki k (2k ) .

	

S[ 2 ' k,l r . t)lr% t

k=1

	

1<r<t< p
k = [r,t]

T7 S 2(k — 1)/ 2 ]Jk 11 S(k — 2)Jksk(2) 2 I ' 1 — n(k ))Jk ,

k odd

	

k even

where 17(k) = 1 if k/2 is an odd integer and 0 otherwise .
Hence the cycle index of Sp2 ` can be expressed as

Z(Sp2* ) = (1/2p!) p!Z(SP21) + E I(a) .

	

(6.6.5 )
aeSp

Now we make the simple observation for self-converse digraphs which
corresponds to that made by Read for self-complementary graphs . Namely ,
the polynomial 2cp(x) counts each digraph twice if it is self-converse an d

(6.6.4)
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once if not . Hence the polynomial 2cp(x) — dp(x) counts each self-converse
digraph just once . Thus we have

d'p(x) = 2cp(x) — d p(x) .

	

(6 .6.6)

This together with formulas (5 .1 .4) and (6.6.3) gives the next result .

Theorem The counting polynomial d'p(x) for self-converse digraphs i s

	

d'p(x) = 2Z(Sp2*, 1 + x) — Z(Sp21 , 1 + x) .

	

(6 .6.7)

To use formula (6 .6 .7) for d'p(x) let

F(Sp2*) = ( l ip! ) E I(a) .
aeSp

Even though this last expression does not refer to a permutation group ,
we still define the substitution of 1 + x in it to mean the polynomial obtaine d
by replacing each variable Sk in F(S1* ) by 1 + xk . Combining (6 .6.7) and
formula (6 .6.5) for Z(42*), we obtain

d'p(x) = F(Sp2*, 1 + x) .

	

(6 .6 .8)

To illustrate, we develop the polynomial d3(x) for the self-converse
digraphs on three points . The cycle index of the symmetric group S 3 is

Z(S3) = 6(si + 3s 1s + 2s 3 ) .

	

(6.6 .9 )

From this and formula (6 .6.4) for I(a), we have

F(S32 *) = *(s2 + 3sisi + 2s6).

	

(6.6.10)

Formula (6 .6.8) gives for p = 3 ,

d3(x) = 6((1 + x2)3 + 3(1 + x) 2 (1 + x2)2 + 2(1 + x6 ))

	

= 1 + x + 2x 2 + 2x3 + 2x4 + x 5 + x6 .

	

(6.6.11)

and for p = 4,

d'4(x) = 24((1 + x 2 )6 + 6(1 + x)2(1 + x2)5 + 8(1 + x6)2

+ 3(1 + x)4(1 + x2)4 + 6(1 + x4)3)

= 1 + x + 3x 2 + 5x3 + 9x4 + 10x ' + 12x6

+10x'+9x8 +5x9 +3x 1 °+x" +x12 .

	

(6 .6.12)
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0	 o

	

0	 0

	

0	 0	 	 o

0o

Figure 6.6 . 2
Five self-converse digraphs .

These coefficients may be checked in detail by examining the diagram s
of the four point digraphs in [HP6] or in the Appendix of [H1]. In Figure
6 .6.2 we show the five self-converse digraphs with four points and three lines .

A slight modification of formula (6 .6.7) results in the polynomial r p(x )
that enumerates self-converse digraphs in which loops are permitted .
On permitting the addition of loops to digraphs, we obtain, of course, jus t
relations . It is easy to see how the power group Sp2 can be used to coun t
relations up to conversion . Recall that the ordered pair group Sp acts on al l
ordered pairs (where the elements need not be distinct) as induced by th e
symmetric group Sp . As shown in (5 .1 .13), the polynomial rp(x) which count s
relations i s

rp(x) = Z(Sp, 1 + x) . (6.6.13)

Then r'p(x) is given by

rp(x) = 2Z(Sp 2, 1 + x) — Z(Sp, 1 + x) . (6.6.14)

To use equation (6 .6.14), it is convenient to introduce the followin g
notation for each permutation a in S p

p
J(a) = I(a) E skk .

	

(6.6.15)
k= 1

Then the cycle index of the power group Sp2 can be expressed :

Z(S
p

2) =	 1! (p!z(sfo + E J(a) .

	

(6.6.16)
2t' •

	

3,Es p

Now let

1
H(S

p
2 ) =

	

E J(a) .
P • (€sp

Then the formula for rj,(x) can be writte n

	

rp(x) = H(Sp 2 , 1 + x) .

	

(6.6.18)

Let dp be the total number of self-converse digraphs with p points .
Then, referring to (6 .6.7), we see that dp = d'p(l ) . In order to express a formul a

0

	

0	 .	 0

	

0

(6.6.17)
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0 0

	

0 0

	

a 0

	

0	 0

0 0
Figure 6 .6 .3

The self-converse relation on two points .

for d 'p in relatively manageable form, we introduce the following notation .
For each a in S p , let

— 1 .
E(a) =

	

(2 , k)
k

2 Jk + k J2k

	

+ n(k )I k
k= 1

+

	

1

	

(2, [r, t])(r, t)JrIt .

	

(6.6.19)
1<r<t< p

Since the replacement in (6 .6.8) and (6.6.4) of each Sk in F(Sspf) by 2 gives
dp(1), we have

d 'p = ( 1 /p!) 1 2 E( " ) .

	

(6.6 .20)
.es,

A similar formula is easily obtained for the total number r'p of self-
converse relations with p points . The total for p = 1 to 6 are in Table 6 .6.1 .

The eight self-converse relations on two points are drawn in Figure 6.6 .3 .

TABLE 6.6 . 1

THE NUMBER OF SELF-CONVERSE DIGRAPH S
AND RELATIONS ON p POINTS

p 1 2 3 4 5 6
dp 1 3 10 70 708 15 24 8
r p 2 8 44 436 7 176 222 368

EXERCISE S

6.1 (a) How many orbits of functions from a set of m elements to a set of n
elements are determined by the power groups En-, E„-, and St" ?
(b) How many onto functions are determined by these power groups ?
(Hint : Use binomial coefficients or Stirling numbers of the second kind . )

(Palmer [P2])
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6.2 Find formulas for Z(S3 3), Z(C33), Z(S33*), and Z(C33') .

	

(Read [R6] )

63 8P = Eq ( 1)ggp
q

	

(Frucht and Harary [FH1] )

6.4 Find the series C(x, y) such that the coefficient of xrys is the number o f
six-beaded necklaces which have r beads of two interchangeable colors ,
s beads of two other interchangeable colors and 6 — r — s red beads .

6.5 Find the series N(x, y) which has as the coefficient of x rys the number of
graphs with four points and r lines of two interchangeable colors and s line s
of three other interchangeable colors .

6.6 In how many ways can the faces of a cube be colored with three colors ,
two of which are interchangeable ?

6.7 In how many ways can the faces of the cube be colored with two inter -
changeable colors ?

6.8 Find a formula for Z(S2^) .

6.9 Self-complementary eulerian graphs .

	

(Robinson [R18] )

6.10 Self-converse oriented graphs, and self-complementary oriente d
graphs .

	

(Sridharan [S5] )

6.11 The number of self-complementary tournaments of order 2n is

1	 ~	 2n)	
!
	 J 2kjk/ 2 fl 2(r,t)jrjt

`2n)! (j)
flkjkjk!

k

	

r< t

where the asterisk indicates the summation is over all partitions (j) of 2n
with jk 0 only when k is even but 4 ,f' k. Se!f-complementary tournament s
of odd order .

6.12 Vacuously transitive relations, and digraphs in which there are n o
transitive triples .

	

(Sharp [S2] )

6.13 Digraphs whose converse and complement are isomorphic .
(Palmer [P6] )

6 .14 A signed graph is sef negational if it is isomorphic to the signed graph
obtained by changing positive lines to negative and vice versa . Self-negationa l
signed graphs .

	

(Read [R7])

6.15 In order to state deBruijn's polynomial form [B5] of the PGET it i s
convenient to assume that B = Hi= o Bi with B . acting on Y . In many
applications B has this form . Let

Z(B.) = 1

	

fl
b,i(a )

( B l flea, k

	

k
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Then the polynomial C(x) which counts orbits of the power group BA i s

obtained by first setting
[m/k ]

b i k = exp k

	

Zksx ik s

s = 1

in Z(B) . 'Then

	

a

	

a

	

C(x) = [Z( A
; aZ1
	 	 Z(B)

aZm

	

1 Zk = 0



If it tastes good already, it will taste even better with
paprika on it .

Old Hungarian saying

If an important decision is to be made, they discuss
the question when they are drunk, and the following
day the master of the house where the discussion was
held submits their decision for reconsideration when
they are sober . If they still approve it, it is adopted;
if not, it is abandoned. Conversely, any decision they
make when they are sober, is reconsidered afterwards
when they are drunk .

Herodotus on the Persian s

Chapter 7 SUPERPOSITIO N

There are several natural ways to define the union of a collection o f
graphs. In each case we shall call the union a "superposition ." Three of
these are illustrated in Figure 7 .0.1 . The problem of determining the numbe r
of "different" superpositions which can be obtained by superposing a give n
set of graphs has been solved for several interesting special cases . Redfield
[R10] was the first to obtain such a solution . His enumeration theorem, whe n

(2)

o r

0

u

	

i

	

=

0

0

	

o r

Figure 7 .0 . 1
Three different superpositions.
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combined with his "decomposition theorem," also lends itself to the enumera -
tion of graphs and digraphs. The object of this chapter is to present Redfield' s
enumeration methods while recasting them in contemporary notation an d
terminology (see [HP8], [P4], [F2]) .

7.1 REDFIELD'S ENUMERATION THEORE M

The operations cap n and cup u on cycle indexes were used by Redfiel d
to express the results in both his "enumeration theorem" and his "decompo-
sition theorem." They were exploited by Read to derive his "superpositio n
theorem" [R1], and were interpreted by Foulkes [Fl] as scalar products o f
certain group characters. These two operations can be introduced in a ver y
general setting .

The ring of rational polynomials in the variables s l s 2 , . . . , sd is denoted
by R. The operation cap is first defined for a sequence si's2

	

sdd, si's22

sad, . . . of m > 2 monomials in R by
d

	

m— 1

(sils2 . . . sd") n (s i1 s22 . . . sad) n . . . =

	

[1 kik i k !

	

(7 .1 .1 )
k= 1

if i k = jk = • • . for all k, and is 0 otherwise (b° = 1 even when b = 0) .
By linearity, the cap operation may then be extended to arbitrary poly-

nomials in these variables .
The second operation, cup, is defined for monomials in terms of cap :

(s;'s2 . . . sd) u (si'si2-2 . . . sad ) u . . .

= [(slls2 . . . sd) n (si1s22 . . . sad ) n . . . ]si' . . . sd.

	

(7 .1 .2 )

This operation is also extended linearly so that it also is defined for cu p
products of m polynomials .

Thus the result of applying the cap operation is a number whereas th e
cup leads to a polynomial . In practice, these operations are applied only
to the cycle indexes of m permutation groups of the same degree . To illustrate ,
we give the details for a case where m = 2 with the cyclic and dihedral group s
of degree 4 :

Z( C4) = *(si + s2 + 2s4)

	

(7 .1 .3)

Z(D4) = 8(si + 2sis 2 + 3s2 + 2s4 )

	

(7 .1 .4)

Z(C4 ) n Z(D4 ) = 32 [(si n si) + 3(s2 n sz)

	

(7 .1 .5)

+ 4(s4 n s4)] = 32 (24 + 24 + 16) = 2

Z(C4) u Z(D4) = 3z (24si + 24s2 + 16s4 ) .

	

(7 .1.6)

Thus Z(C4) n Z(D4) is just the coefficient sum of Z(C4) u Z(D4) .
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Let W be the collection of m x n matrices in which the elements of each
row are the n objects in a set S. Thus there are (n ! )' matrices in W. Two
matrices in W are said to be column equivalent if one can be obtained from the
other by a permutation of the columns, and it is easy to see that there ar e
(n 9'11 corresponding equivalence classes. Next, another equivalence
relation is defined for the column-equivalence classes. Let C 1 and C 2 be two
such classes and let B 1 , . . . , B. be permutation groups with object set S .
Then C 1 and C 2 are called equivalent with respect to (B 1 , . . . , B,„) if there is a
sequence $1 , . . . , fin, of permutations with f3i in B. for each i and a matri x
[wig] in C 1 such that [$1 w 1j] is in C2 . That is, fi permutes the elements in
the ith row of some matrix in C 1 and the result is a matrix in C 2 . Redfield' s
enumeration theorem expresses the number of these classes in terms of th e
cycle indexes of the groups Bi and the cap operation.

Redfield's Enumeration Theorem The number N[B 1 , . . . , B„] of classes
of m x n matrices equivalent with respect to the permutation group s
(B 1 ,

	

, B,,) is

N[B 1 , . . . , Bn,] = Z(B 1 ) n • • • n Z(B,,,) .

	

(7 .1 .7)

This result can be verified by first constructing a permutation group that
has as its orbits the classes of matrices to be counted . Then (7.1 .7) follows
from Burnside's Lemma (2 .3.3) applied to this group .

We now show how the theorem can be used to calculate the number o f
superpositions of a set of graphs . Let G 1 , . . . , G,„ be m graphs each of which
has the same set of n points and in which, for each i = 1 to m, the lines of G,
are labeled with the integer i (or belong to color class i) . A superposition
of these graphs has the same set of points and any two of them, say u and v
are adjacent with line label i whenever u and v are adjacent in G i . Thus the
lines in a superposition are labeled but the points are not . To illustrate we
display in Figure 7.1 .1 all the superpositions composed of two cycles o f
order 5 . We use solid and dashed lines to indicate the two colors .

Redfield [RIO] and Read [R1] observed that the number of differen t
superpositions is simply the number of classes of m x n matrices which are

Figure 7 .1 . 1
The superpositions of two cycles .
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equivalent with respect to (F(G 1 ), . . . , F(G,)) . Thus we can determine th e
number of superpositions, provided we know the cycle indexes Z(G 1) of the
groups F(G 1 ) of the graphs involved . This writing of Z(G) in place of Z(F(G))
is a convenient abuse of notation .

Corollary The number of different superpositions of m graphs G, with the
same set of unlabeled points is

Z(G 1 ) n . . n Z(Gm ) .

	

(7 .1 .8)

For example, to determine the number of superpositions of two cycles o f
order n we can calculate Z(D,,) n Z(D,,), since the group of a cycle is D .
With n = 5 we know from (2 .2.11) that

Z(D5) = io(si + 4s5 + 5s 1 sz).

	

(7 .1 .9)

From the definition of the cap operation it follows that

Z(D 5 ) n Z(D5) = loo(s i n s i + 16s 5 n s5 + 25s 1 s2 n s 1 s2)

= 1 4 0 (120 + 80 + 200) = 4,

	

(7 .1 .10)

and this is verified by the superpositions of Figure 7 .1 .1 .
Redfield's Enumeration Theorem can be used to determine the numbe r

of superpositions when the constituents are directed graphs or both graph s
and digraphs. Indeed, Redfield illustrated his theorem by superposin g
cycles and directed cycles separately and together . Figure 7.1 .2 shows the
two superpositions of a directed and an undirected cycle of order 4, thu s
verifying equation (7 .1 .5) .

Finally, suppose G is a graph with n points and just one line. Then the
number of superpositions of m copies of G is equal to the number of multi -
graphs with n points and in which each line has a different color . Since
Z(G) = Z(S 2 )Z(S n _ 2), the number of these is the n-product of length m :

Z(S2)Z(Sn _2) n . . n Z(S2)Z(Sn - 2) •

Figure 7 .1 .2
Two superpositions of a directed and an undirected cycle .
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%\

	

0`

0	 /	 ```

	

\\

Figure 7.1 .3
The superpositions of three lines on three points .

With m = n = 3, the value of this product is 5 . The corresponding super -
positions are shown in Figure 7.1 .3 with solid, dashed and dotted lines t o
distinguish the copies of G.

REDFIELD'S DECOMPOSITION THEORE M

The decomposition theorem for u-products is not used directly fo r
enumeration purposes but it can be exploited in determining the cycl e
index of the pair group S (p2) and the reduced ordered pair group Sp2I . Further-
more, it suggests a means of finding a formula for the cycle index sum of th e
groups of all graphs . The latter formula plays an important role in th e
enumeration of blocks as derived by Robinson [R 19] .

To state the theorem we first associate in a natural fashion a permutatio n
group with each of the N[B 1 , . . . , Bm] classes of matrices enumerated i n
(7 .1 .7) . Suppose [wig] is an m x n matrix in the kth class . Then the permutation
group A k associated with this class consists of all permutations y such that y
is an element of each group B i , and [wig] and [ywij] are in the same class ,
i .e., are column equivalent . When Redfield's Decomposition Theorem
is applied to graphs, the classes of matrices correspond to superpositions .
Hence each superposition has associated with it a permutation group .
Indeed, this group consists of all the permutations of the points of the super -
position that preserve adjacency in each of the constituent graphs. For
example, the groups of the superpositions in Figure 7 .1 .2 are the cyclic
group C4 and the wreath product S 2 [E2 ] .

Redfield's Decomposition Theorem Let B 1 , . . . , Bm be in permutation
groups of degree n and let N be the number of classes of m x n matrice s
equivalent with respect to (B 1 , . . . , B m ) . Then the N permutation groups
H 1 , . . . , HN associated with these classes satisfy

N

Z(B ) v . v Z(Bm) = E Z(Hk) .

	

(7.2 .1 )
k=1

0
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Thus Z(C4) u Z(D4) equals the cycle index sum Z(C4) + Z(S 2[E 2]) of the
superpositions in Figure 7 .1 .2 .

Proof To prove the theorem we make use of a simple group-theoreti c
identity, called Redfield's Lemma, which will enjoy wide applicability .
Let A be a group with the permutation representation A' on object set Y.

For each a in A, we denote by a ' the image of a in A' for this representation .
Let cp be a function from A into some polynomial ring over the rational s
which is constant on the conjugate classes of A ; as usual, cp is then called
a class function for A . It is then also a class function for A'. Suppose A' has N
orbits. Let y l , . . . , YN be elements of Y, one from each of the N orbits and fo r
each k = 1 to N let

	

A k = {a e AI a'Yk = Yk}•

	

(7 .2.2)

Then we have the following generalization of Burnside's Lemma :

Redfield's Lemma
N

I A I - I E j l(a') gq (a ) =

	

I Aki - I . E 9(a) .

	

(7 2.3)
aeA

	

k= 1

	

aeA k

The verification of (7 .2.3) is similar to that of Burnside's Lemma (2.3.10)
and is therefore omitted . Note that if we chose cp(a) = 1 for all a, then (7.2.3)
is precisely the formula in Burnside's Lemma .

For A we take all m-tuples a = (/3 1 , . . . , An) with /i in Bi for each i = 1
to m . Multiplication in A is defined componentwise, and a' permutes column -
equivalence classes as follows . The class to which [w ig] belongs is sent by a '
to that of [/3 iwij] . Finally 9(a) = 0 unless each component /3 i determines the
same partition (j) of n in which case 9(a) = fink = skk . The proof of (7 .2.1) can
now be completed by applying Redfield's Lemma (7 .2.3). //

The decomposition of u-products is not necessarily unique, but there ar e
several cases important for our purposes in which it is unique (see Redfiel d
[R10] and especially Foulkes [Fl] for a complete discussion) . We are now
concerned with the cycle indexes of cyclic groups . Let a be a permutation of n
objects which has order r, and let Z(a) denote the cycle index of the cycli c
group generated by a . Then we have

r

	

n
z(a) = r—1 E

	

s(k,i),%k(a )

	

k/(k,i)

	

,
i=1 k= I

and if a consists only of a single cycle of length r, Redfield's formula for Z(a)
is easily verified :

(7.2.4)

Z(a) = r -1 E 9(d)sa/d ,
dir

(7.2.5)
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where 9 is the Euler 9-function . The following result is a consequence of the
decomposition theorem and is found in Redfield [RIO] in quite a differen t
form.

Corollary If B is a permutation group of degree n and a is any permutatio n
of n symbols which has order r, then

Z(B) U Z(a) _

	

i kZ(a k ),

	

(7 .2 .6)
k~ r

where the ik are uniquely determined nonnegative integers .

It follows from the Decomposition Theorem (7 .2.1) that Z(B) U Z(a)
is a sum of cycle indexes of groups which are subgroups of both B and the
cyclic group generated by cc. The coefficients ik are unique because the cycl e
indexes Z(a k) are independent . Furthermore, this corollary can be used t o
calculate the cycle index of the derived group of two permutation group s
introduced next .

Let A and B have the same object set X = {1, . . . , n}, which is also the
object set of the symmetric group S,,, and let B be a subgroup of A . The
derived group of A and B is denoted by A/B and has as its object set the righ t
cosets of A modulo B. For each permutation a in A, there is a permutation
a' in A/B such that for any right coset f3B of A, the image of /3B under a' is
OB. That is

«'(#B) = OB.

	

(7 .2 .7)

Thus the permutations in A/B consist of all those permutations of the coset s
which are induced by A under left multiplication . Hence A/B is a homo-
morphic image of A and the degree of A/B is IAMBI . The cycle index Z(S,.B)
can be obtained from the next corollary .

Corollary If S„/B is a derived group, then the permutation a' in S„/B has i k
cycles of length k for each ki t. , where the i k are the coefficients of the Z(ak) in the
decomposition of Z(B) U Z(a) .

Thus the contribution of a' to Z(S„/B) is flk ~ r s . To illustrate, we follo w
Redfield and find Z(S 5/(S 2 S 3)) using this corollary.

From formulas (2.2.4) and (2.2.5) we have

Z(S 5 ) = (1/5!)(4 + 104s 2 + 20sis3 + 15s 1 s2 + 30si s4

+ 20s 2s 3 + 24s 5 ) (7.2.8 )

Z(S 2)Z(S3 ) = i(si + 4sis2 + 2sis 3 + 3s 1 s2 + 2s2 s 3 ) . (7 .2.9)
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Now suppose a is a permutation in S 5 with cycle structure s 2 s 3 , so that
j 2 (a) = j 3(a) = 1 and the order of a is 6 . Since the divisors of 6 are 1, 2, 3, an d
6, formula (7 .2.6) implies tha t

Z(S2)Z(S 3 ) V Z(a) = i 1 Z(a) + i 2 Z(a 2 ) + i 3 Z(x3) + i6Z(a6) . (7.2.10)

On the other hand, since we have from (7 .2 .4 )

Z(a) = 6(s + 2s2s3 + 2sis3 + sis2 ),

	

(7 .2.11 )

we find that

Z(S2 )Z(S3) v Z(a) = 3Si + 3 S 2 S 3 + 3 sis3 + 3 siS2 .

	

(7 .2.12)

Combining (7.2 .10) and (7 .2.12) yields

E ikZ(ak ) = 3Si + 3 S2S3 + 3 SiS3 + 3Sis2 .

	

(7 .2.13)
kI 6

The term s 2 s3 appears in the left side of (7 .2.13) only in i 1 Z(a). Hence the
coefficient of s 2 s3 in the left side of (7.2.13) is i 1 /3 . Since its coefficient in
the right side of (7 .2 .13) is 4, we have i 1 = 1 . Subtracting Z(a) from both side s
of (7 .2.13) gives

i2Z(a2) + i2Z(a3) + i6Z(a6) =

	

+ isis2 .

	

(7 .2.14)

The term ss3 appears in the left side of (7 .2.14) only in i 2 Z(a2) and since i t
does not appear at all on the right side, we must have i 2 = 0. Now sis 2
has coefficient i3/2 on the left side of (7.2.14) and 4 on the right, so i3 = 1 .
Subtracting z(a 3 ) from both sides of (7 .2.14) leaves

i 6 Z(a6) =

and hence i 6 = 1 . Thus the cycle structure of a' in S 5/(S2S3) is given by s 1 s3s6 .
Therefore the 20 permutations with structure s 2s3 in S5 contribute
(20/5!)s 1s 3 s6 to Z(S5/(S2 S3 )) . Next we observe that a 2 has structure sis 3
and since (a2)' = (a')2 , the 20 permutations with structure sis 3 contribute
(20/5!)s 1 s3 to the cycle index of the derived group . Similarly, since a 3 has
structure sis2 , we have the term (10/5 !)sis2 . We can continue in this manne r
to determine the contributions to the derived group of other permutations
in S5 by selecting other elements which generate maximal cyclic subgroups .
On completing the process we hav e

Z(S5 /(S2S 3)) _ (1/5!)(si° + 104s2 + 154s2 + 20s 1 s3

+ 20s 1 s 3 s6 + 30s2s4 + 244).

	

(7 .2.15)

Redfield (see [R10, pp. 451—453]) used this procedure in order to calculat e
Z(S„/(S2S„_ 1)) for n < 7.
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Next we show that Redfield's Lemma (7 .2.3) may be used to obtain
Robinson's formula [R19] for the cycle index sum of the groups of all graphs .
We will see in the next chapter that formula (7 .2.18), to be derived now, is o f
crucial importance in the counting of blocks. As usual Sp is the symmetri c
group acting on X = { 1, . . . , p} and so the pair group S (p2) has object set X(2) ,
the collection of 2-subsets of X. We denote by S(;'2) the group induced by Sp
which acts on the union X u X (2) . For p > 2, both of these groups ar e
abstractly isomorphic to S p . In the formula for the cycle index of S(;' 2 )

we use two sets of variables, S k and t k , to distinguish between cycles of 1 -
subsets and of 2-subsets respectively (s for single and t for two) . This distinc-
tion is indicated by writing Z(S (pl '2) ; sk , t k ) for the cycle index of41'2) . There-
fore if a in Sp induces a' in S (p ), then the contribution of a to Z(S p1 . 2 ) ) can be
Written

where r = (2) .
Let E2 be the identity permutation group acting on Y = {0, 11 . The clas s

function (p for Sp is defined by

(p(a) = rjskk(") .

	

(7.2.16)

We apply Redfield's Lemma (7 .2.3) to the representation E2 `p) of Sp . Then the
right side of formula (7 .2 .2) is EZ(G), where the sum is over all (noniso-
morphic) graphs with p points .

For each permutation of the form (a' ; (0)(1)) in E2p', we also have

r

J1(a ' ; (0)( 1 )) = E 2 ik("').
k= 1

	

Skk(")

	

t )
k1

	

( kEil

r

	

p

Therefore the left side of (7 .2.3) i s

(l/p!) E TT 2ik(e) fl Skk(a )

	

aeSpk=1

	

k= 1

But this last expression is simply Z(S(pl'2)) ; sk , 2), and we have the result of
Robinson [R19] .

Theorem The cycle index sum for all graphs with p points i s

EZ(G) = Z(S (; '2) ; s k , 2) .

	

(7.2 .18)

(7.2.17)
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A variation of (7 .2.18) is obtained when each t k in Z(Sp''2) ) is replaced b y
1 + tk . We then have the cycle index sum of the point-line groups F0,1 (G)
for all graphs with p points :

Z ( F0 .1(G )) = Z(S(p''2)) ; Sk , 1 + t k ) .

	

(7.2.19)

7.3 GRAPHS AND DIGRAPHS

We shall indicate in this section how graphs and digraphs may be regarde d
as "superpositions" and therefore may be enumerated by Redfield's Enumer-
ation Theorem. First we observe that (7 .1 .7) can be used to count certain 1– 1
functions . Recall from Section 6 .6 that BA* denotes the restriction of th e
power group BA to 1–1 functions .

Corollary If A and B are permutation groups of degree n, then the numbe r
of orbits determined by the restricted power group BA* is Z(A) n Z(B) .

The proof follows from (7 .1 .7) with m = 2, because each 2 x n column-
equivalence class of matrices is a 1–1 function from one object set to th e
other. Such column-equivalence classes are equivalent with respect to A an d
B if and only if the corresponding 1–1 functions are in the same orbit of BA* .

//
We now seek the number gp,q of graphs with p points and q lines . To this

end let the pair group SP2) have object set X(2) with X = { 1, . . . , p} as usual .
Also let Y = Y1 v Y2 be a set of r = (Z) integers with Y1 = { 1, . . . , q} and
Y2 = {q + 1, . . . , r} . If group Sq has object set Y1 and group S r _ q has object
set Y2 , we can form the product ;S r _ q , which has cycle index Z(Sq)Z(S r _ q ) .
Now with A = S(p2) and B = SgSr _ q , it can be seen that the orbits of the
restricted power group constitute the isomorphism classes of graphs with p
points and q lines. Each 1–1 function f :X (2) -+ Y represents a graph wit h
point set X, in which i and j are adjacent if f {i, j} is an element of Y1 . Clearly
these functions are in the same orbit of BA* if and only if they represent iso-
morphic graphs . Hence, as Redfield observed, graphs may be enumerate d
using n-products .

Theorem The number of (p, q) graphs is

gp q = Z(S(p2) ) n Z(Sq)Z(Sr _ q),

	

(7 .3 .1 )

where r = (z) .
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Redfield was able to compute the numbers of graphs with p < 7 havin g
no isolated points using a formula similar to (7 .3 .1). In the terminology o f
Whitehead and Russell [WR1] he referred to these graphs as "symmetrica l
aliorelative dyadic relations on fields of p elements ." He had no explici t
formula, such as (4.1 .9) for Z(Sp2j ), but since the pair group can be realized
as a derived group, he was able to employ the corollaries of his Decomposi-
tion Theorem to obtain the appropriate cycle index formula for Z(ST).
Specifically, we find the following identity for the pair group as a derive d
group :

S p2) = Spl(S2Sp- 2) .

	

(7.3.2)

Although we omit its proof, note that the degree of each side is (2) and see
formula (7 .2.15) for Z(S5 /(S2S3 )) . Thus the Decomposition Theorem was a
basic part of Redfield's enumeration techniques . We note briefly the cor-
responding formulas for directed graphs . Since

Sp23 = Sp/(E2S _ 2),

	

(7 .3 .3)

the cycle index Z(Sp21 ) of the reduced ordered pair group can be found usin g
the two corollaries of the Decomposition Theorem. Then the number dp q

of digraphs with p points and q lines is

d p q = Z(Sp21) (1 Z(Sq)Z(Sr _ q ),

	

(7 .3 .4)

where r = p(p — 1) .

7.4 A GENERALIZATION OF REDFIELD'S
ENUMERATION THEOREM

In this section we shall construct a more general permutation group tha n
that required in the proof of Redfield's Enumeration Theorem, and give a n
explicit formula for the number of orbits in it . This result enables us t o
enumerate superposed graphs composed of interchangeable copies of th e
same graph (see Palmer and Robinson [PR2] and [PR3]), and it also provide s
a new approach to the enumeration of multigraphs [P4] .

Let A and B be permutation groups with object sets X = { 1, . . . , rn }
and Y = { 1, . . . , n} respectively, and let W be the collection of m x n
matrices in which the elements of each row are the n objects in Y. The matrix
group [A ; B] of A and B acts on the column-equivalence classes of W as
follows. For each permutation a in A and each sequence /3 1, /3 2 , . , f3 m
of m permutations with

	

in B, there is a permutation, denoted [a ; #1 ,
, /3,n] in [A ; B] such that the column-equivalence class to which the matrix
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[w,j] belongs is sent by [a ; /3 l , /32 , . . . , /3 m] to the class to which [/3,wz ; .1]
belongs. That is, a first determines a permutation of the rows and then each
Jai permutes the entries in the i'th row. For example, let A = S2 and
B = S2[E2] so that [S2 ; S2 [E 2 ]] permutes 2 x 4 matrices . With a = (12) ,

= (1)(2)(3)(4) and /3 2 = (12)(34) it follows that [a ; )3 1 ,/32] sends the clas s
of the matrix

1

	

2

	

3

	

4 3

	

1

	

4

	

2
to that of

3

	

1

	

4

	

2 2

	

1

	

4

	

3

From the definition it follows that with A = Em , the identity group ,
the number N[Em ; B] of orbits of the matrix group is the cap-product of m

copies of Z(B) . Therefore if B is the group of a graph G of order n, N[Em ;
F(G)] is the number of superpositions of m copies of G . On the other hand ,
N[Sm ; F(G)] is the number of superpositions in which the copies of G are
interchangeable. To illustrate, we consider the path P4 of order 4 . All eight
superposed graphs composed of two copies of P 4 are shown in Figure 7.4.1 .
Solid and dashed lines are used to distinguish the copies . Interchanging th e
solid and dashed lines permutes the last two graphs in the figure and leaves
each of the first six fixed . Thus the figure confirms that N[E2 ; F(P4 )] = 8 and
N[S2 ; F(P4)] = 7 ; this latter number is calculated in (7.4.13) below.

In order to state the theorem which gives the formula for the number
N[A ; B] of orbits of the matrix group [A ; B], we require several definitions .
As usual R is the ring of polynomials in the variables For
each positive integer r, we define a function Jr : R —* R . It is convenient firs t
to define a sequence of functions d i ,d2 , . . . which depend on the integers r

and k

	

1 . For each i, let

sk ;/k

	

if ilr and (r/i, k) = 1

	

d i =

	

(7 .4 .1 )
0

	

otherwise .

Figure 7.4 . 1

The superpositions of two paths of order 4 .
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Using Si as usual to denote the symmetric group on j objects we define J,(sk)
by

J ,.( sk) =j!k'Z(S; ;d1,d2, . . .,di).

	

(7.4.2 )

Observe that for any prime p, the previous formula (7 .4.2) for Jp(sk) can
be written

(0

	

((

	

if plk but p ,1' j

(j ki(P- 1)/PSpk
)I((j~P)

pJ/P)~

	

if plk and p i j

Ll /P]
(j ! k(P - i )tskpSk- tP)/((J — tp) ! t ! pt )

	

if p ,f/ k .
t = 0

For monomials si's2 - - - sj^, we then define Jr by
n

Jr(si1s22 . . sn) = f Jr(Skk ) .

	

(7.4.4)

k= 1

Now Jr is extended linearly to R. In particular
n

Jr(Z(B)) = I BI - 1 E Jr ft
Skk(Q)

	

(7.4.5 )

/fEB

	

k= 1

and

J 1 (Z(B)) = Z(B).

	

(7.4.6 )

Next we define a product for the collection {Jr} of functions. We set

J11J2 . . . J;„ (Z(B)) = Ji (Z(B)) v . . v Jm (Z(B))

	

(7.4.7 )

where it is understood that before evaluating the right side of (7 .4.7), each
J;r(Z(B)) is replaced by the cup-product of length i t

Jr(Z(B)) v . . L.) Jr(Z(B)) -

Theorem The number of orbits N[A ; B] determined by the matrix group
[A ; B] is

N[A ; B] = [Z(A ; J 1 , J2 , . . . , J,n)Z(B)]sk=1 .

	

(7 .4.8 )

We now apply the theorem to obtain the number N[S2 ; F(P4)] of super -
posed graphs composed of two interchangeable copies of P 4 .

The cycle indexes of F(P4) and S 2 are

Z(F(P4)) =

	

+ s2)

	

(7.4.9)

and

Jp(sk) (7.4.3)

Z(S2 ;J 1 ,J2) = 2(Ji + J2) .

	

(7.4.10)
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From (7 .4.6) we have J1(Z(F(P4))) = Z(F(P4 )) . And from (7.4.3) we
obtain

J2(Z(F(P4))) = 1(si + 6s .s2 + 3sz + 2s4 ) .

	

(7 .4.11 )

It is easily seen tha t

Z(S2 ; J 1, J 2)(1(si + s z)) = 1{4(24s4 + 8sz)

+ 1(si + 6sis2 + 3sz + 2s4)} . (7.4.12)

Evaluating this expression with s k = 1 for all k give s

N[S2 ; ['(P4)] = 7,

	

(7 .4.13)

which is verified in Figure 7 .4.1 .

TABLE 7 .4 . 1

SUPERPOSITIONS OF CYCLES

n N [ E 2 ; D„] N[S 2 ; D „] N[E 3 ; D ] N [S 3 ; D„]

3 1 1 1 1
4 2 2 5 3
5 4 4 24 9
6 12 10 391 89

The number of superpositions of two and three cycles of order <6 ar e
given in Table 7.4.1 . Note that there are two superpositions of two cycles o f
order 6 which are equivalent when the constituent cycles are interchangeable .

The number mpq of multigraphs with p points and q lines can also be
calculated using the matrix group . Let G be the disjoint union K 2 v K 2 .
Then the superpositions of q interchangeable copies of G correspond pre-
cisely to these multigraphs . Since F(G) = S2Sp _ 2 we can express the formula
from [P4] as follows .

Theorem The number mp,q of multigraphs with p points and q lines is
given by

mp,q = [Z(S q ; J 1 , . . . , Jq) (Z (s2)Z(sp - 2))]s k = 1 .

	

(7.4.14)

Some of the details in finding m 5,4 are now sketched. First of all we hav e
the product Z(S 2)Z(S 3 ) in (7.2.9) and Z(S 4 ; J 1 , J2 , J3 , J4) is obtained from
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(4.1 .10) . From equations (7 .4.1) through (7 .4.5) we have the following calcula-
tions

J2(Z(S2)Z(S3)) = ii(si + 1Osis2 + 15s 1s2 + 2sis3 + 2s2 s3 + 6s 1 s4)

J3(Z(S2)Z(S3)) = 12(51 + 20sis 3 + 4sis2 + 8s2 s3 + 3s1 s2)

	

(7 .4.15)

J4(Z(S2)Z(S 3)) = 12(si + 10Sis2 + 15s 1 s2 + 30s 1 s4 + 2sis3 + 2s2s3) .

From the definition (7.4.7) of products, we find

[J1(Z(S2)Z(S3))]s k = = 107

[6JiJ2(Z(S2)Z(S 3))]sk =1 = 162

[8J 1J3(Z(S2)Z(S3))]sk =1 = 40

	

(7 .4.16)

[3J3(Z(S2)Z(S3))]s k =1 = 69

[6J4(Z(S2)Z(S 3))]sk =1 = 30 .

Therefore m5,4 = 24( 107 + 162 + 40 + 69 + 30) = 17 . The great advan-
tages of this method are that only the cycle index formulas of the symmetri c
groups are required and mp,q is computed directly.

7.5 GENERAL GRAPHS

A general graph is permitted to have both multiple lines and multipl e
loops. By definition each loop at a point contributes 2 to the degree of tha t
point . In this section we shall show how Read [R 1] was able to enumerat e
general graphs with specified degree sequence by finding a 1—1 correspon-
dence between these graphs and certain superpositions .

First, we require a formula for the number of bicolored multigraphs, tha t
is multigraphs whose points are partitioned into two sets, one consisting o f
red points, the other of blue points, and every line of the graph joins a re d
point with a blue one. The two bicolored graphs with two red points o f
degree 3 and three blue points of degree 2 are shown in Figure 7 .5.1 . The
following theorem provides a formula for the number of bicolored graph s
with specified degrees .

Figure 7 .5 . 1
Two bicolored graphs .
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Theorem The number of bicolored graphs which have for each positive
integer k exactly rk red points of degree k and b k blue points of degree k is

Z fl S rk[S k ] n Z

	

Sbk[S k ] .

	

(7 .5 .1 )
k

	

k

For example, it is easily shown that Z(S 3 [S2 ]) n Z(S2 [S 3]) = 2 which
agrees with Figure 7 .5.1 .

Proof Let G 1 be a graph that has for each k, rk components which are com-
plete graphs on k points. Similarly, G 2 has for each k, bk components which
are complete graphs on k points. Note that the number of lines in the bi-
colored graphs to be counted is q = > k kr k = ~k kb k . Therefore G 1 and G 2
have the same number of points, namely q. If the components of G 1 are
interpreted as red points and the components of G2 as blue points, then each
superposition of G 1 and G 2 is seen to correspond to a bichromatic graph .
This correspondence is clearly 1–1 and therefore the number of bicolore d
graphs is Z(G 1 ) n Z(G2 ) . Furthermore F(G 1) and F(G 2) can be expressed

	

as a direct product of wreath products, as in (7.5.1) .

	

//

Next we seek the number of general graphs that have for each k, dk
points of degree k . The number of lines in these graphs is, therefore, q = 2lkd k .
Suppose the points of such a graph are colored red and then a blue point i s
inserted on each line . A bicolored graph is then obtained in which all q
blue points have degree 2. This correspondence indicated between genera l
graphs and bicolored graphs is, of course, one-to-one and thus we have th e
next result .

Corollary The number of general graphs which have for each k, dk point s
of degree k is

	

Z (n Sdk [Sk] n Z(S q[S 2]) .

	

(7 .5 .2)

For example, the number of general graphs with two points of degree 3
is Z(S 2[S3 ]) n Z(S3[S2]) = 2. The two general graphs enumerated can b e
obtained by suppressing the points of degree 2 in Figure 7 .5.1 .

Regular general graphs and cubic general graphs are obtained at once as
special cases .

Corollary The number of genes al graphs on n points which are regula r
of degree k is

Z ( Sn[Sk]) n Z(Snk/2[S2]).

	

(7.5.3)
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Corollary The number of general cubic graphs on 2n points i s

Z(S2n[S3]) n Z(S3n[S2])•

	

(7 .5.4)

In the formulas just above we have been concerned with enumeratin g
unlabeled graphs . The superposition theory has been exploited with grea t
success by Read [R1] to enumerate various types of labeled graphs . For
example, it follows quickly from (7.5.4) that the number of general cubic
graphs with 2n labeled points i s

Z(E2n[S3]) n Z(S3n[S2])•

	

(7 .5.5 )

Our next goal, then, is to find formulas for labeled cubic graphs with n o
loops and no multiple lines . The result will be expressions remarkabl y
similar to (7.5.4) . We shall provide, first, general results from which the cubic
case follows immediately .

As in (2.6.1), we denote the difference Z(A k) — Z(Sk ) by Z(Ak — S k ) .
We shall also make use of the notation provided in Chapter 4 for the cycl e
index of the wreath product . In particular, if P 1 and P2 are polynomial s
in the variables s 1 , S 2 , . . . , then P1 [P2 ] denotes that polynomial obtaine d
by replacing each variable S k in P1 by the polynomial which results when on e
multiplies all the subscripts of the variables in P2 by k . Thus expressions
such as Z(Sq) [Z(A2 — S2)] and Z(S3n ) [Z(A2 — S2)] are defined .

The next three theorems are obtained by applying PET with suitabl e
group and figure counting series, and by expressing the appropriate co -
efficient as a n-product ; see Read [R1] for the details . These three result s
and their respective corollaries count the three kinds of labeled graphs wit h
given partition and labeled cubic graphs : (1) multigraphs, (2) general graphs
with no multiple lines, and (3) graphs .

Theorem The number of labeled multigraphs with dk points of degree k
and hence q = 2Ykd k lines i s

Z (n Ed ,[S k] n Z(Sq) [Z(A 2 — S2 )] .

	

(7 .5.6)
k

We now apply this theorem to cubic graphs with 2n points to get th e
next formula .

Corollary The number of labeled, cubic multigraphs with 2n points i s

Z(E2n[S3]) n Z( S3n) [Z(A 2 — S2)] .

	

(7.5.7 )

On excluding multiple lines but not loops we have the next result .
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Theorem The number of labeled, general graphs without multiple lines
and with d k points of degree k and q lines i s

Z (n Ed k [Sk] n Z(Aq — S q) [Z(S 2)] .

	

(7 .5 .8 )
k

When this is applied to cubic graphs, we arrive at the next formula .

Corollary The number of labeled, general, cubic graphs with 2n points
and no multiple lines i s

Z(E2n[S3]) n Z(A 3n - S3,) [Z(S2)] .

	

(7 .5 .9 )

Finally, both loops and multiple lines are excluded .

Theorem The number of labeled graphs with d k points of degree k and q
lines is

Z (n Edk [Sk] n Z(Aq — Sq) [Z(A2 — S2)] .
k

Corollary The number of labeled, cubic graphs with 2n points and hence 3n
lines is

Z(E2n[S3]) n Z(A3n — S3n) [Z(A 2 — S2)] .

	

(7.5 .11 )

To evaluate the expressions (7.5 .7), (7 .5 .9), and (7 .5 .11) requires a con-
siderable amount of computation, but Read was able to obtain some general
results for these in [R1] . For example, in the case of (7.5.11) he found :

Corollary The number of labeled, cubic graphs with 2n points i s

(2n) !

	

(—1 }'(6k — 2j) ! 6'	
48k	 	 (—1)`j !	 	 (7 .5 .12)

6" .f-I', (3k — j) ! (2k — j) !j ! (n — k) !

	

i (j — 2i) ! i !

and the number of these is asymptotic t o

(6n)e - 2

	

288"(3n)! .

	

(7 .5 .13)

An extensive discussion of the problem of evaluating cap-products and o f
methods using S-functions is given by Read [R8] . Further asymptotic results
are developed in Chapter 9 .

(7.5 .10)
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EXERCISES

7.1 How many superpositions can be obtained from three directed cycle s
of order 6?

7.2 Find two permutation groups A and B such that the decompositio n
of Z(A) u Z(B) as a sum of cycle indexes is not unique .

	

(Redfield [R10] )
7.3 Express Z(A ; J 1 , . . . , Jm)Z(B) as a sum of N[A ; B] cycle indexes .

(Palmer and Robinson [PR3] )
7.4 How many orbits of 1-1 functions are determined by the restricte d
power groups g m`, Ens-% and S,,-* ?

7.5 The pair group Sp' ) and the derived group Sp/(S2Sp _ 2) are identical .
7.6 Calculate Z(S6/(S2 S4)) using (7 .2.6) .

7.7 How many superposed graphs can be formed from three interchange -
able copies of a directed cycle of order 6 ?

7.8 Calculate the number of (a) general cubic graphs (b) labeled cubi c
graphs of order 4, 6, and 8 .

7.9 Draw the 12 superpositions of two cycles of order 6 and the 10 wit h
interchangeable cycles .

7.10 The coefficient of x m in Z(S,/B, 1/(1 - x)) is N[Sm ; B] . Hence the
generating function for superpositions with interchangeable colors of an y
graph G of order p is Z(Sp/I'(G), 1/(1 - x)) .



Not merely a chip of the old block, but the old block

itself.

Edmund Burke

Chapter 8 BLOCKS

The theoretical physicist, G . E. Uhlenbeck, in the Gibbs Lecture entitled
"Unsolved problems in statistical mechanics," given at a meeting of th e
American Mathematical Society in 1950, cited the enumeration of block s
as one of these problems . Subsequently Riddell [R14], and Ford and Uhlen-
beck [FU1] counted labeled blocks (Section 1 .3), but it was Robinson [R19 ]
who succeeded in solving the unlabeled problem .

Since we have already enumerated connected graphs in Chapter 4, it i s
sufficient for counting blocks to find the number of connected graphs tha t
do have at least one cutpoint . Ordinary generating functions do not carry
enough information about the structure of graphs, and so the appropriat e
basic technique involves sums of cycle indexes of groups of graphs (Sectio n
7 .2 .). This approach was implicit in Redfield's Decomposition Theore m
[R10] and was fully developed in Robinson's solution to this problem .
Robinson's method can also be used to enumerate graphs with given blocks,
connected graphs with no endpoints, acyclic digraphs, and other kinds o f
graphs. The material in this chapter is essentially due to Robinson .

177
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8 BLOCKS

8.1 A GENERALIZATION OF REDFIELD'S LEMM A

To prove the Composition Theorem of Section 8 .3, we need a slight
generalization of Redfield's Lemma (7 .2.3). Let A be a permutation grou p
with object set X and let R be any commutative ring which contains th e
rationals . Let (p be any function from the Cartesian product A x X into R
which satisfies the following condition for a and /3 in A and x in X :

If ax = /3y = x,

	

then cp(a, x) = 9(30 -1 , y) .

	

(8 .1 .1)

The orbit of x determined by A is denoted by z and A(x) = {a e AI ax = x} .
Then the new lemma takes the following form .

Lemma For any function (p satisfying (8 .1 .1), the following identity holds :

	

I'4 I -1 E E (p(a , x) =

	

IA(x)l - ' E 9(a, x) .

	

(8 .1 .2)
aeA x=ax

	

aeA(x )

The proof is made as in (7 .2.3) by interchanging the sums on the left side o f
(8.1 .2) . Condition (8.1 .1) allows us then to sum over the orbits of A in X,

instead of all the elements of X.

	

//

Note that (8 .1 .2) holds in the case in which X is infinite but countabl e
provided that all of the sums involved are defined. If 1/i is a class function for
A, then 9(a, x) = 1/i(a) satisfies (8 .1 .1) and with this definition (8 .1 .2) becomes
Redfield's Lemma .

8.2 THE COMPOSITION GROUP

To state the Composition Theorem of Section 8 .3, it is necessary t o
generalize the definition of the composition or wreath product of permutation
groups. We also provide a formula for the cycle index of this group, thereb y
generalizing Polya's formula (4 .3.15) .

As observed in [H1, p. 166] any graph G can be written as G = n 1 G 1 u

n2 G 2 u • • u nrGr , where n; is the number of components of G isomorphic
to G ; . Then the group of G is expressed as a product of composition groups :

r(G) = II s,lk[r(Gk)] .

	

(8 .2 .1 )
k= 1

For example, the graph 2K 1,2 u 3K 2 of Figure 8 .2.1 has as its group

F(2K1 , 2 u 3K3) = S2[S I S2](S3[S2])•

	

(8.2 .2)
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V V 0

	

0

	

0

0

	

0

Figure 8 .2 . 1

The graph 2K 1 2 u 3K 2 .

Let G 1 = K 12 2 and G2 = K2 . Then each function f from X = {1, 2, 3 ,
4, 5} into Y = {1, 2} corresponds in a natural way to a graph whose com-
ponents are K 1 .2 and K 2 . For example, any function which sends two ele-
ments of X to 1 and the other three to 2 corresponds to 2G 1 u 3G2 . Suppose
f (l) = f (2) = 1 and f(3) = f(4) = f (5) = 2 . Then the permutations a of X
such that

f(x) = .f (ax)

	

(8 .2 .3)

for all x in X, constitute a group identical to the product S 2S 3 . This group i s
denoted by S 5 (f) because it consists of the permutations in S 5 that fix f
and it determines how the components of 2G 1 L.) 3G2 may be permuted
among themselves. With this example in mind, we now generalize the compo -
sition group .

Let A be a permutation group with object set X = {1 , 2, . . . , n} and let
f be a function from X onto Y = 11, 2, . . . , m}. Then A(f) is the subgroup o f
A defined by

A(f) = {a e AI for each x in X, f (x) = f (ax)} .

	

(8 .2.4)

Therefore if we set X i = f 1 (i) for each i in Y, then a(X i) = X i for each i in Y
and a in A(f ) . For each i =, 1 to m let B i be a permutation group with object
set Yi . Then the generalized composition group, denoted A(f) [B 1 , . . . , Bm] ,
has its object set the union U'in=l Xi x Yi . For each a in A(f) and each
sequence t1 , . . . , -c m of functions such that t i : Xi ---► B i for i = 1 to m so that
t i(x) is a permutation in B i , there is a permutation in A(f) [B 1 , . . . , B m] ,
denoted (a ; it , . . . , Tm), which permutes the ordered pairs (x, y) in the objec t
set according to the rule :

(a ; ti , . . . , T,) (x, y) = (ax, Ti(x)y)

	

(8 .2 .5)

whenever (x, y) is in X i x Yi . One can then easily verify the fact that th e
permutations of this form are closed under multiplication so that the col-
lection does constitute a group . Intuitively, A(f) [B 1 , . . . , Bm] permutes
copies of the sets Y for i = 1 to m, with one copy for each element of X i .
The copies of Y are permuted among themselves by the permutations in A(f ) ,
while the elements of each copy are permuted independently by B i .
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Since for each i we have a(X i) = X i , for each k we can define jk(a, X i )
to be the number of cycles of length k in a restricted to X i . Then the generaliz -
ation of (4 .3 .15) may be stated as follows .

Theorem The cycle index of the generalized composition group is given b y
m

	

Z(A(f) [B 1 , . . . , B,,J) = 1A(f )I — 1

	

fi fl Z(Bi ; Sk, S2k, S 3k , . . . )Jk(a,X i )

2EA(f) i=1 k

	

(8 .2.6)

Note that when m = 1, then Z(A(f) [B 1]) = Z(A(f )) [Z(B 1 )] and formula
(8.2.6) reduces to (4 .3.15). The proof of (4.3 .15) can be adapted to a proof o f
(8.2.6) .

To illustrate the theorem, we return to the example above where A = S5 ,
f(1) = f (2) = 1, and f (3) = f (4) = f (5) = 2 . Then X 1 = 11, 2} and X 2 =
{3,4, 5} . We take B 1 = F(K 122) = S 1S2 and B2 = I'(K 2) = S2 with object
sets Y1 = {1, 2, 3} and Y2 = {1, 2} respectively. Then the composition group
S5(f) [S 1 S2 , S 2 ] has (X 1 x Y1 ) u (X 2 X Y2 ) as its object set, and the ordere d
pairs in this set correspond to the points of 2K 122 u 3K2 as indicated in
Figure 8 .2 .2 .

Each function : X —> I'(K 1,2 ) associates with each copy of K1,2 a
permutation in T'(K 1,2 ) and T2 :X2 --> F(K 2 ) does the same for K2 . Suppose
(a ; T 1 , T2) is an element of S 5 (f) [S 1 S 2 , S2 ] . From (8.2.5) it follows that T 1 (1 )
and T 1 (2) permute the points of the two copies of K 122 while T 2(3), T 2(4) and
T 2 (5) permute the points of the three copies of K2 . Then a permutes the com-
ponents of 2K 1 .2 u 3K2 among themselves. Thus it is seen that

F(2K1,2 u 3K2) = S5(f)[S 1 S2, S2]

	

(8.2.7)

Finally, from the formula (8 .2.6) for the cycle index it can be shown tha t

Z(S5(f)[S 1 S2, S2]) _ (1/2!3!){Z(S 1 S2 )2 + Z(S 1 S2 ;s2 ,s4 ) }

{Z(S 2 )3 + 3Z(S2)Z(S2 ; s2 , s4) + 2Z(S2 ; s3 , s6 )} .

(1\/viI :

	

1)

	

(13)

	

(2,1)

	

(2,3)

	

(31)

	

(41)

	

(5,1 )

(1,2)

	

(2,2)

	

(3,2)

	

(4,2)

	

(5,2 )

Figure 8 .2 . 2

The graph 2K 1,2 u 3K 2 with point sets (X 1 x Y1 ) u (X 2 x Y2 ) .
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This equation is easily verified by applying the cycle index formulas (4.3.14)
and (2.2.14) to (8 .2 .2) .

8.3 THE COMPOSITION THEOREM

For any set Ye of graphs, we shall denote by Z( .) the cycle index sum o f
the groups of the graphs in ; compare (7 .2 .18), the cycle index sum of th e
groups of all graphs of order p . Under special circumstances each of thes e
groups may be a composition group formed from a subgroup of the group A
and a sequence of groups B 1 , B2 , B 3 , . . . . We shall show here how to obtain
Z(), given Z(A) and Z(B i) for each i = 1, 2, 3, . . . .

In particular, let A be a permutation group with object set X = { 1, . . . , n} .
Let Y be any nonempty subset of the positive integers, and let Bi be a permuta-
tion group with object set Y for each i in Y. In practice, each element i of Y
corresponds to a graph with group Bi and point set Y . We require throughou t
this discussion that only finitely many Yi have the same cardinality, so that
the sum EZ(B i) over all i in Y is defined .

For each function f : X –► Y, we define the subgroup A(f) of A as above.
Next we define an equivalence relation for these functions from X to Y.
We say that f and g are equivalent with respect to A, and we write f g
if for some a in A

f (x) = g(ax)

	

(8.3.1 )

for all x in X ; that is, f g means thatf and g are in the same orbit of th e
power group EA . We denote the set of equivalence classes (orbits) by .97.
Now each function f has associated with it a generalized composition group .
If f (X) = {i 1 , . . . ,

	

then this group formed by A(f) and B it , . . . , B in,
can be denoted by A(f) [ B 1 1 , . . . , B im] . Iff and g and equivalent, then A(f)
and A(g) are identical permutation groups. In fact, they are conjugate becaus e
iff (x) = g(yx) for some y in A and all x in X, then yA(f )y -1 = A(g). Further-
more, the generalized composition groups A(f) [B it , . . . , B iJ and A(g) [Bit ,
. . . , B i,,, ] are also identical . Hence they have the same cycle index, and we can
define the cycle index of any equivalence class of functions F in S to be the
cycle index of the composition group determined by any function f in F.
If we let Z(7) = EFE.t Z(F), then the main result, expressed in the next
theorem, relates Z(3) to Z(A) and the Z(B i) . Recall that, by Z(A)[EZ(Bi) ]
we mean the power series obtained when each variable Sk in Z(A) is replaced
by

.E,Z(Bi ; Sk, S2k, S3k, . . ),

where the sum is over all i in Y
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Composition Theorem The cycle index sum Z(7) is obtained by com-
posing Z(A) around >Z(B i) :

49) = Z(A)[>Z(Bi)],

	

(8 .3 .2 )

where the sum is over all i in Y

Proof We consider the representation of A as the power group EA with
object set YX ; that is, A' = EA and for each a in A, there exists a' in A' such
that for any f in YX

(a'f )x = f (ax),

	

(8 .3 .3)

for all x in X .
Let R be the ring of power series in the variables s 1 , s2 , s 3 , . . . over the

rationale. We define the map 9 : A' x YX --* R by

9(a ; f) =

	

Z(Bi ; s k , s2k, . . .)Jk(c Xi) .

	

(8 .3.4)
k ief(X)

One can check that 'p satisfies condition (8 .1 .1). Then on applying Lemm a
(8.1 .2) above we have

AI 1 E E '(a',f) _ j IA(f)l -' E (p(a', f ),

	

(8 .3 .5)
aeA f=af

	

F

	

aeA(f )

where the sum on the right side of (8 .3.5) is over all classes F in and f is
some element of F. Note that although the lemma is only stated for the cas e
in which the sums are finite, it still holds when all the sums are defined . The
sums are defined in (8 .3 .5) because we have required that only finitely man y
Bi have the same degree .

From definition (8 .3 4) for gyp, and equation (8 .2.2) for the cycle index of th e
composition group, it ca n be seen that the right side of (8 .3 .5) is Z(. F). It is
also easily verified that for each a in A

Jk(a )

E cp (a',f) = f E Z (B i ; s k , s 2k, . . .)

	

(8.3.6)
f=a'f

	

k i€ Y

and the proof is completed .

	

//

8.4 CONNECTED GRAPHS

Our object is to determine the cycle index sum for all connected graph s
as a function of the cycle index sum for all graphs . This can be accomplished
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with the aid of the Composition Theorem . If is the set of all graphs, then
from formula (7.2.18) we have

z(s) _

	

Z(5l,1 .2, ; s k , 2),

	

(8 .4.1 )
n= 1

and therefore we can regard. Z() as known. Now we shall take an alternativ e
approach toward finding Z(W), just as in the case of finding the ordinar y
generating function for connected graphs . Let be the set of all connected
graphs, and let Sp, consist of the graphs which have exactly n components .
With the symmetric group S n acting on X, we consider all functions f : X -~
Each function represents that element of which has I f -1(G)I component s
isomorphic to the connected graph G in . It is clear that functions whic h
are equivalent with respect to Sn represent the same graph in Sn . Since each
graph in 6 has an automorphism group, each function f has associated wit h
it a generalized composition group which is precisely the group of the grap h
represented by f. To obtain the cycle index sum Z(4) for all inequivalent
functions, we may apply the Composition Theorem to obtain the followin g
identity :

Z(4) = Z(Sn) [Z(66 )] .

	

(8.4.2)

On summing (8 .4.2) over all n we have

Z(f) =

	

Z(Sn) [Z(`c)] .
n= 1

But since

E Z(Sn) = exp E sk/k ,

n=0

	

k= 1

(compare formula (3 .1 .1)), we have

1 + Z(~) = exp E (sk/k) [Z(')] .

	

(8.4.5 )

k= 1

From an idea by Cadogan [Cl], (8 .4.5) can be solved for Z((6) using mobiu s
inversion (see Robinson [R19] for details), and hence the theorem takes the
following form .

Theorem If and (e are the sets of all graphs and connected graphs
respectively, then

µ( l ) (-0'
1Z(`e) = E

	

si[Z()].

	

(8 .4.6 )
i=1

	

1 ,j=1

	

J

(8.4.3 )

(8 .4.4)
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From (8 .4.1) one can obtain as the first few terms

Z(g) = S 1 + Si + s2 + 3Si + 2S 1 S 2 + 4s3 + 3Si

+ 4sis 2 + 2s2 + 4,303 + S4 +

	

(8 .4.7)

On substitution in (8 .4.6) we have

Z(')=s1 +2si+Zs 2 +3Si+s 1 s2 +3S3

4- +14 + 2sis2 + 4 s2 + 3S03 + 2 s4 + . . . . (8.4.8)

Note that on setting sk = 1 in those parts of Z(g) and Z(') which consis t
of terms of degree <4, one obtains the number 18 of graphs with <4 points
and the number 10 of connected graphs with <4 points . It should also b e
emphasized that although formula (8 .4.6) is an explicit expression for Z(') ,
it is much easier to cornpute Z(') directly from (8 .4.5). Specifically let cep
be the set of connected graphs on p points, and S(p) the set of graphs, eac h
component of which contains at least p points . Then W(1) = g and Z(Wp)
consists precisely of the terms of order p in Z(g(p)) . From the Compositio n
Theorem we have

1 + Z(g(p + 1)) _ (1 + Z(g)) exp E — (sk/k) [Z(Wp)] .

	

(8 .4 .9)
k= 1

Therefore Z('p) is determined inductively for each p .

8.5 CYCLE INDEX SUMS FOR ROOTED GRAPHS

We now establish a relationship between cycle index sums for a collection
of graphs and the corresponding rooted graphs. Since a graph G can be
rooted at any of its points, a rooted graph may be considered to be an ordered
pair (G, u) where u is a point of G. Two rooted graphs (G, u) and (G, v) are then
the same (isomorphic) if and only if u and v are in the same orbit of the group
of G . The automorphisms of (G, u) consist of all the automorphisms of G
which fix u . For convenience, however, we do not include the root point in th e
object set of the group of any rooted graph . Suppose ° is any set of graph s
and . ' consists of all the different rooted graphs which can be obtained b y
rooting the graphs in ff. By an abuse of notation we again use Z( .)P) and
Z(.YE') to denote the cycle index sums of all the graphs in .Y° and the rooted
graphs in .'. Now Redfield's Lemma (7.23) may be applied to obtain a
relationship between Z(A°) and Z( °') .
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Theorem The cycle index sum Z(°(') for rooted graphs is the partial deriva-
tive of Z(°) with respect to the first variable :

Z(') = aZO/as 1 .

	

(8.5.1 )

Proof It is obviously sufficient to prove the result when A' consists o f
exactly one graph G. We apply Redfield's Lemma (7.2.3) to the group of G
with the class function

9(a) _ flsk'`~~~

	

(8.5.2)

for each a in the group of G . Then the left side of (7 .2.3) is s 1 aZ(G)/as 1 and
the right side is s 1 Z(°') .

	

//

As an example, consider the complete graph K„, whose group is S n .
This graph can be rooted in only one way and the group of the rooted grap h
is

	

1 . Therefore, we have

aZ(S„)/as l = Z(Si _ 1 ),

	

(8 .5.3)

which can also be verified by routine computation from (2 .2.5) .

8.6 BLOCKS

First we shall determine the cycle index sum for all rooted blocks . That is ,
if is the set of all blocks, we seek an expression for Z(1') . This is accom-
plished by finding Z(T) in terms of Z(B') and then inverting the relationship .
We observe from the Composition Theorem that the cycle index sum for al l
connected graphs which are rooted at a point which is not a cutpoint i s

Z(g') [s 1Z( "̀' )]

Again applying the Composition Theorem, it can be seen that the cycle inde x
sum for all rooted, connected graphs in which the root is incident with exactl y
n blocks is

Z(S,,) [Z(2') [s1 Z(")]]

On summing over all n and applying the identity (8 .4.4), we have

Z(cg') = exp E (sk/k) [Z(M') [s1Z(`e')]] .

	

(8 .6 .1 )
k= 1

Since z(c') = 0Z(W)/as 1 , formula (8 .6.1) could be inverted to find Z(2') ,
but as in the determination of Z(ce) it is easier to use the exponential relation
(8.6.1) directly as follows .
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We let "(p) be the set of rooted, connected graphs such that every block
containing the root point has at least p points . Since the one-point graph ha s
no blocks, we have

Z(T(2)) = Z(") .

	

(8 .6.2)

IfRp is the set of all blocks with exactly p points, then Z( .Op) consists of al l
the terms of order p — 1 in Z("(p)) .

Now let p be the set of all rooted connected graphs with exactly p
points in each block that contains the root . In the same manner as (8 .6.1 )
was obtained we have

Z(.YCp) = exp E ( sk/k) [Z (2p) [s l Z(`e')]] . (8 .6.3 )
k= 1

It is clear that

Z ( W' (p + 1))Z( p) = Z(T (p)), (8 .6 .4)

and so combining (8 .6.3) and (8 .6.4) we have

Z(' '(p + 1)) = Z (W' (p )) exp —

	

E (sk/k) { [Z (ap) [s 1 Z(W')]] f • (8 .6 .5)
k= 1

Therefore, if Z(Mp) and Z((e'(p)) are known, (8 .6.5) can be used to obtai n
Z(c'(p + 1)). But then Z(2p+ 1 ) consists of all the terms of order p in
Z(T(p + 1)) and hence Z(2p ) is determined inductively. Finally .

Z(4') = E Z(,R 'p),

	

(8 .6.6)
p = 2

and the sum starts at p = 2 because of our convention which excludes th e
one point graph from . and ~' .

Let Z(ap)I51= o be the series obtained from Z(a'p) on replacing each s 1 by
zero ; in other words Z(ap)I

5 , = o is the contribution to Z(Mp) of all auto-
morphisms which have no fixed points . At this point we observe tha t

s ,

Z(2p) = J Z(2'p ) ds 1 + Z(ap)I =0 .

	

(8 .6.7)
0

Therefore our remaining task is to obtain Z( .4p )l51= o . To this end we state th e
following result from [R19] .

Theorem Every connected graph G which has a fixed-point free auto-
morphism has a unique block whose points are permuted among themselve s
by all automorphisms of G .
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We also have
s ,

Z((6) _

	

Z(W') ds i + Z((6)Is,

	

(8 .6.8)
0

and from the Composition Theorem we know that the cycle index sum for al l
connected graphs rooted at a block is Z(a)[s1Z(')] .

Therefore by the theorem (8 .5 .1), the fixed-point free contribution t o
Z((6) is just Z(a)[s1Z0')] evaluated at s 1 = 0 :

Z (`6)Is, = 0 = Z(~) [s 1 Z((6 ')] Is, =0 .

	

(8 .6 .9)

In practice, of course, we may use the identity :

(Z(a)Is,=o)[s1Z(`")] = Z( a )[s1Z(`~)]Is~=o .

	

(8 .6.10)

In order to determine Z(ap) I S1= o inductively, let a(p) be the set of all non -
separable graphs (blocks) with at least p points . Note that .1(2) = a and that
Z (ap)Is 1 = o consists of all the terms of order pin Z(a(p)) [s1Z((6')]Is, ° o . Since
a(2) = a, (8 .6.9) gives us

Z(a(2))[s1Z(`6')]Is,=0 = Z ( '0Is,=o,

	

(8.6.11 )
and, of course,

Z(a2)Is,

	

= s2/2 .

	

(8 .6.12)

The next question, which follows from the fact that a(p) is the disjoin t
union of a p and a(p + 1), completes the induction argument :

Z(~(P + 1 )) [s 1 ZO ' )] Is, = 0 = Z(a(p)) [s 1 ZR ' )] Is, = 0

— Z(ap)[s1Z(`"')]Is,=o .

	

(8 .6.13)

Specifically, if Z(ap) I 5, = 0 and Z(a(p)) [s 1 Z((6')] Is, =0 are known, then (8.6.13)
determines Z(a(p + 1)) [s 1 Z('')]IS1= o , whose terms of order p + 1 are
precisely the terms of Z(a p+ 1)Is, =0 .

Finally, we have

Z(m )Is,=O

	

Z( p)Is, = o

	

(8.6.14)
p= 2

and Robinson's Enumeration Theorem for blocks may be stated in the
following way .

Theorem The cycle index sum Z(a) for blocks is given b y
rs ,

Z(a) = J Z(a') ds 1 + Z(a)IS, = o

	

(8 .6.15)
0

where Z(a') is determined by (8 .6.1) and Z(a)IS1=o by (8.6.11) and (8 .6.13) .
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TABLE 8 .6. 1

TE[E NUMBER OF BLOCKS OF ORDER p

p

	

1

	

2

	

3

	

4

	

5

	

6

	

7

	

8

	

9
b

	

0

	

1

	

1

	

3

	

10

	

56

	

468

	

7 123

	

194 066

The reader may find it instructive to use this method to determine th e
terms of order less than five in Z( .1) :

Z(M) = 14. + 2 s2 + 1-4 + 2 s1s2 + 3 s3 + 12 s1 + sls2

+ 4s2 + 3 s l s3+ s4+

	

(8.6.16)

The number of blocks of order p is, of course, just the coefficient sum of
Z(2p ) .

This method has been programmed by Osterweil [03] for a compute r
and the results for graphs with less than ten points are displayed in Tabl e
8.6.1 .

8.7 GRAPHS WITH GIVEN BLOCK S

Numerous classes of graphs can be defined in terms of the blocks whic h
are contained in the members of the class. For example, trees are the con-
nected graphs whose blocks are all isomorphic to K 2 ; block graphs have al l
of their blocks complete ; cacti are the connected graphs whose blocks ar e
lines or cycles ; connected graphs with no points of degree < I are precisel y
the nontrivial connected graphs none of whose end blocks are isomorphi c
to K2 , i.e., with no endpoints . To enumerate some of these classes of graph s
we shall provide generalizations of some of the results of the previous
section. We shall also provide a generalized form of the method devised b y
Norman [Ni] for counting graphs with given blocks . The discussion again
follows Robinson [R19] !

Let g be a class of blocks and let .( be the set of connected graphs eac h
of whose blocks is in g The first result, which expresses Z(AY') in terms o f
Z(g') can be derived in a manner similar to the verification of (8 .6 .1) .

Theorem The cycle index sum Z(1') for rooted, connected graphs whose
blocks are in the set g is given b y

Z(.YY') = exp E ( sk/k) [Z(g') [sl Z(*')]] .

	

(8 .7 .1 )
k=1
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If Z(i) is given, then Z(g ') = OZ(')/es 1 and formula (8 .7.1) can be used
to obtain Z( .f'). The next theorem expresses Z( .() in terms of Z(.%'') .

Theorem The cycle index sum Z( .y() for connected graphs whose block s
are in the set .2 is given by

J Z(r)ds iZ() =

	

+ Z(g)I51=o[s1Z( .K')] .

	

(8 .7.2 )
0

The proof of this result is similar to that of (8 .6.9). Note that we could have
used this theorem to establish formula (8 .6.9), because with f = ce and

= R, formulas (8 .7.2) implies (8 .6.9). To further illustrate the use of (8 .7.2) ,
we shall show how the cycle index sum for trees can be derived . Let .
be the set of all trees and let g consist only of the complete graph K 2 . Thus
Z(g') = s 1 and by (8 .7.1) we have

Z(.9-') = exp E (s k/k) [s l Z(J')] .

	

(8 .7.3)
k= 1

Now Z( .9-') can be determined recursively from this relation . For example ,
the terms of order less than 5 in Z(g9-') are

Z(.%- ') = 1+s 1 ±Zsi + zs2 + 3 Si +S 1 S 3 + 3 S 3

+ 245 st + 4SiS2 + $ S2 + 3S 1 s3 + Is, +

	

(8.7.4)

These terms correspond to the rooted trees of order less than 6 . From (8.7.3)
and (3 .1 .1) it follows that

5
Z(gi-') = 1 + E Z(S k ) [s 1 Z(J ')] + • . •

	

(8 .7.5)
k= 1

Then the terms of order 5 in Z( .%-') may be computed in five contributions :

Z(S1)[s1Z(J ')] = . . + 24 si + 4 s
1

S 2

+

Z(S2) [S1 Z(. ')] = . . . +

Z(S3)[s1Z(g-')]
= . . . +

Z(S4) [s 1 Z(g%')] = . . . +

Z(S5)[s1Z(9')] = 12o S 1

8 s1s2 + 3 Sis3 + 4SIS4 + . . .

5 S1 + Z SiS2 + 2 SiS 3 + . . .

4si + sls2 + 4s 1s2 + . . .

	

(8.7.6)

6S1 + ZSis2 + 3SIS3 + . . .

+ 12 S 1 S 2 + 8 S 1 S 2

+ -SiS 3 + 4S 1 S4 + 5253 + SS5 + . . .
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Combining all terms of order 5 in Z(J-'), we have

54 SS + 16--s s + 3S S 2 + 32 + 1 S S + 1 S S + 151

	

3

	

2

	

2 1 2

	

y0103

	

2 1 4

	

6 2 3

	

3S5 .

Now Z() 10 = 4(si + s2){s, = o = s2/2, and therefore from (8 .7.2)

s ,
Z(%) =

	

Z(J ') ds 1 + (s2/2) [s 1 Z(J')] .

	

(8 .7.7)
0

With (8 .7.4) we can calculat e

	

2 S2[s 1 Z(J')] = 2 s2 + 402 + 0204 + . .

	

(8.7 .8 )

and on integrating Z(J-') and adding (8 .7.8), we have the terms of order 6
in Z(9 ) :

Z(J)=s 1 +zsi +2s2 +Zsi +2 s 1 s2+3 si + 2si s2

+ 2 s2 + 3 S 1 s3 + 24 5 1 + 1 s s2 + 8 s 1 S 2

+ 3 S 1 S 3 + 1S1S4 + SST + 3 0 1 0 2 + 1 S 1 S 2

+ 2S1S3 + 02 + -1- 4S4 + 10204 + 6S 1 S 2 S 3

+ 5s 1 s5 + • .

	

(8 .7 .9)

This result is checked by summing the coefficients and comparing th e
number with the number of trees on fewer than seven points (see equatio n
(3 .2 .8)).

Next we introduce Robinson's generalization of Norman's method [Ni ]
for determining the number of graphs with given blocks .

Theorem The cycle index sum ZO for graphs whose blocks are in th e
set g is given by

	

Z(.'') _ (s 1 + Z(g) — s 1 Z(g'))[s 1 ZO] .

	

(8 .7 .10 )

Note that in (8.7.1) and (8.7.10) ZO and Z(') can be replaced b y
ordinary generating functions, but this cannot be done in (8 .7.2). Further-
more, when cycle index sums are required, (8 .7.2) is much easier to use tha n
(8.7.10) .

We conclude this section by using the techniques developed here t o
enumerate connected graphs without endpoints . The following theorem o f
Robinson [R19] enables us to obtain the appropriate cycle index sum afte r
inversion .
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Theorem The cycle index sum Z(.,'H) for the set

	

of all connected graph s
with no endpoints satisfie s

Z('6) = Z(,) + Z(.-Gl) [s 1Z(•Y ')] .

	

(8.7.11 )

The proof uses the Composition Theorem and the fact that connecte d
graphs which are not trees correspond to the graphs to be enumerated wit h
rooted trees attached to them. The latter correspondence also serves t o
provide the basis for counting the number of labeled graphs derived from . #

To invert (8.7 .11) note than an element of (6 on p + 1 points is either in ,/#
or its maximal subgraph which has no endpoints has less than p + 1 points .
Now if .Glp consists of those elements of mil on at most p points, then th e
terms of order p + 1 in Z(-,LZp)[s1Z(J')] correspond to all connected graph s
on p + 1 points, except for trees, which do have endpoints. Therefore the
terms of order p + 1 in Z( . T) + Z(/Np) [s 1 Z(.')] are contributed by al l
connected graphs with p + 1 points and with at least one endpoint. There-
fore Z(,GZp+ — Z(/Glp ) consists of the terms of order p + 1 in

Z((6) — (Z(J) + Z(ilp) [s 1 Z(Y')]) •

For example, to determine Z(~G14) — Z(. H3 ) we begin with

Z(d13) = 6 s 1 + 4s Is2 + 4s 3

	

(8 .7 .12)

and from (8 .7.4) and (8.7 .12) we hav e

Z(.%'3) [s1Z(,07-')] = 6 S i + i s 1 s2 + 4 s3 + 4 s4 + Isis2 + • • • . (8 .7 .13)

Now from (8 .4.8) for Z('), (8 .7.4) and (8 .7 .13) we hav e

Z(~4) —ZY/3) = 12 51 +S1S2+452+3S1S3+ZS4 .

	

(8 .7 .14)

The coefficient sum in (8 .7.14) is 3 and there are, indeed, exactly three
connected graphs on four points which have no endpoints .

8.8 ACYCLIC DIGRAPH S

We have seen in Section 1 .6 that every acyclic digraph has at least one
point of indegree zero and that any extension of an acyclic digraph is also
acyclic. Robinson [R20] used these facts to count both labeled and unlabele d
acyclic digraphs . However, to count unlabeled acyclic digraphs, he found i t
necessary to incorporate information about the symmetries of all th e
acyclic digraphs . This was accomplished by using cycle index sums in which
cycles of points of indegree zero are distinguished from the other cycles .
Then a bilinear operation for cycle indexes can be defined so that the cycle
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index sum for extensions of any acyclic digraph D can be expressed in terms
of Z(D) and Z(S„). This leads to a recursive formula for the cycle index su m
of all acyclic digraphs of order p .

We have expressed cycle indexes with two sets of variables in severa l
places . To distinguish between points and lines, Sk and tk were used in section
4.4 for counting supergraphs and in formula (7 .2 .19) for the cycle index su m
of the point-line groups of graphs of order p . To count mixed graphs i n
Section 5 .4, Sk and tk appear in the cycle index of the reduced ordered pair
group (5 .4.5) to stand for pairs of converse cycles and self-converse cycles
respectively .

Here we express the cycle index of the group of a digraph D using two
sets of variables : Sk for cycles of points of indegree zero and tk for cycles o f
the other points . With this convention, the acyclic digraphs D 1 and D2 of
Figure 1 .6 .2 have Z(D 1) = sit s and Z(D2 ) = 2(4t 1 + s2t 1 ) .

Now Redfield's Lemma (7 .2 .3) can be used to obtain an alternative
expression for the cycle index sum of all the extensions of order p of a n
acyclic digraph Do of order p — n . Let A = S„ x F(Do) and note that A
induces a group A' whose object set consists of all extensions of Do to acyclic
digraphs with n points of indegree zero . This representation of A can be
made explicit by using a restricted power group, but since we have used this
approach so often, a hint should be sufficient . For each /3 in F(Do), let jk be
the number of cycles of length k of points of indegree zero, and let Mk be the
number of cycles of length k of the other points of Do . Fora in S,,, let i k be
the number of cycles of length k. This looks like a surfeit of variables bu t
their presence will make our formulas less cluttered . Then for each (a, )6) in
A we define the class function 'p for A by

'p(a, /3) = fJskt;k+mk
.

	

(8 .8 .1 )

The permutation in A' induced by (a, /3) is denoted by (a, /3)' and j1((a, /3)' )

is the number of extensions fixed by (a, /3)' . On applying (7.2.3) we can con-
clude that

	

EZ(D) _= n ! IF(Do)I -1 E j1((a , /3) ')(p(a, /3),

	

(8 .8.2)
(a,/9 )

where the first sum is over all extensions of Do with n points of indegree zero .
The number j 1 ((a, /3)') depends only on the cycle structure of a and /3 an d

can be determined explicitly :

j1(( cx , fly)

	

{J (2£k(k,r)lk _ 1)yr2£k(k .r)ikmr .

	

(8 .8 .3)

Note the resemblance of the right side of (8 .8 .3) to the contribution

'S•[r,k]
(Jr+mr)ik

r,k
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of (a, /3) to the cycle index of the cartesian product S n x F(Do) as in (4 .3.10) .
Replacing each variable S[r .k] in this expression by 2 gives the right side o f
(8.8.3) except for the term — 1 . The presence of the latter ensures that in each
digraph fixed by (a, /3)' all the points of Do have positive indegree .

In order to express the counting theorem entirely in terms of cycle indexes ,
the bilinear operation * is defined for monomials b y

~ si k * fl s;ktk = J1((a, /3)' )P(a , /3)

	

(8 .8.4)

where the right side is determined by (8 .8 .1) and (8.8.3). On extending this
operation linearly, we can restate (8 .8 .2) as

>Z(D) = Z(S,,) * Z(Do) .

	

(8 .8 .5)

Finally on summing this equation we have the main result .

Theorem The cycle index sum Z(,Y(p) for the set .gyp of acyclic digraphs o f
order p satisfies

p
Z( p) = E Z(Sn) * Z( ,Yep _,,)

	

(8 .8 .6)
n= 1

where Z( . %) = 1 by definition .

Robinson chose to express his counting formula in terms of the cycle
index sum for the entire set of acyclic digraphs . On summing (8.8.6) over
all p, his equation is obtained

Z(*') = E Z(S,,) * (1 + Z(Ye)) .

	

(8 .8.7)
n= 1

Equation (8.8.6), however, is what one actually uses for calculating th e
number of ap of acyclic digraphs of order p. For example, to determine a4 ,
we need Z(r1 ), Z(.*2 ), and Z(°3). These are easily found with the aid of
Figure 8.8.1 .

Z(rP1 ) = s 1

Z(1(2 ) = -21 (si + s2) + s i t 1

4'6) = 6si + 3s 1 s2 + 2s3) + isit l + Is 1 t 2 + is l ti + Is2 t 1

	

(8 .8 .8)

o

	

0

0 0 0.o A A A A
Figure 8 .8 . 1

The acyclic digraphs of order 3 .
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TABLE 8 .8 . 1

ACYCLIC DIGRAPH S

p

	

1

	

2

	

3

	

4

	

5

	

6

a,,

	

1

	

2

	

6

	

31

	

302

	

5 984

Using (8 .8.1) and (8 .8 .3) as prescribed in the definition of the bilinea r
operation * in (8 .8.4), we hav e

Z(S4) * Z(Yeo) = Z(S 4)

Z(S3) * Z(°1) = 6S 1 + 2 S 1 S 2 t 1 + 3S 3 t 1

Z(S2) * Z($"2 ) = 3Fs ti + 4Sit2 + 452ti + 4S2t 2

Z(S1) * Z(Ye3) = f9S 1 ti + ZS 1 t 1 t2 + 3S I t3 .

	

(8 .8 .9 )

On adding these four equations (8 .8.9), we obtain Z( 4), whose coefficien t
sum 31 is the number of acyclic digraphs of order 4 . Robinson used thi s
method to compute the numbers in Table 8 .8 .1 .

EXERCISES

8.1 Find the cycle index sum of all graphs with four components which
consist of triangles and cycles of order 4 .

8.2 Find the cycle index sum Z(M5) for all blocks of order 5 (see (8 .6.16) for
ZA) with k < 5) .

83 Find the first few terms of the generating functions which enumerat e
connected graphs whose blocks consist of complete graphs of order (a) 2 ,
(b) 3, (c) 4, or (d) cycles of order 4 .
8.4 Use the methods of this chapter to enumerate (a) cacti and (b) block
graphs .

8.5 Draw the 31 acyclic digraphs of order 4 (see Table 8 .8.1) . (Hint : Use
Appendix 2 of Harary [H1] .)



It is not the business of the botanist to eradicate the
weeds. Enough for him if he can tell us just how fast

they grow .

C. Northcote Parkinso n

Chapter ~ ASYMPTOTI GS

There are basically two methods for determining asymptotic formula s
for graphs, and both are essentially contained in the published and unpub-
lished work of Polya, in the form of a letter to us in 1951 . The choice of method
depends on whether or not the graphs, or structures to be enumerated, are
"treelike . "

Both Riddell [R14] and Polya investigated the asymptotic numbers o f
graphs, and some of their results were improved by Oberschelp [01] an d
Wright [W5, W6] . In the first three sections of this chapter we provide the
details of methods for determining the asymptotic number of graphs and
digraphs. It appears that these methods can be applied successfully to variou s
classes of graphs ; for example, see Palmer [P5] and Harary [H8] .

In Section 9.4 we consider asymptotic estimates for connected graphs
and blocks . The results of Section 9.1 can then be used to show that almos t
all graphs are connected and that almost all graphs are blocks .

In [P8], Polya found asymptotic results for those trees which represen t
the saturated hydrocarbons : all points have degree one or four . His approach
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was improved and generalized by Otter [04] and applied by Ford and
Uhlenbeck in the series [FU1] to graphs with given blocks, and hence cacti ,
as well as ordinary trees. Section 9.5 presents Otter's treatment of this
problem.

9.1 GRAPHS

Polya obtained the following formula for the asymptotic number of
graphs gP of order p :

g;,

	

2 (D/p!

	

(9.1 .1 )

It follows from formula (4 .1 .9) that 2 (f)/p! is the largest term contribute d
to gP by Z(S (p2) , 2) . Heuristically, the dominance of this term may be explained
by observing that dividing the number 2 (V of labeled graphs by p ! "remove s
the labels ." Formula (9.1.1) can be improved, see Oberschelp [01], to obtai n
better approximations for gP up to remainder terms of order (2(Dp k)/(p!2Pk/2)

for k = 2, 3, . . . . The next theorem includes the improvement with k = 3 .

Theorem The number g P of graphs of order p satisfies

gP = 2(i) 1+P2

2

	

3

P - 1p + C9
2PP/2

.

	

(9 .1 .2)
P

Proof Recall that the number of permutations in S P which correspond t o
the partition (j) of p is denoted by h(j) and is specified in formula (2.2.4) .
From formula (4.1 .9) for the cycle index of the pair group of SP, the number
q(j) of line-cycles determined by each of these permutations i s

k
q(j) =

	

jk + E k 2 + : (r, t )jrjt .

	

(9.1 .3 )
k

	

k

	

r< t

Now for each k = 0 through p, we let gip ) be the contribution to gP

determined by all partitions (j) with exactly p — k parts equal to 1 ; that is ,

g(p') _ (1/p!)lh(j)2g(r),

	

(9 .1 .4)

where the sum is over all partitions (j) with j l = p — k. Then, of course ,

P

gP= E g
p

k ~ ,
k=0

(9.1 .5)
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and from formulas (9 .1 .3) and (9.1 .4) it follows quickly tha t

g
(
p° ) = 2(=)/p! .

	

(9 .1 .6)

For k = 2, consider the partition (j) = (p — 2, 1, 0, . . ., 0) with j 1 = p — 2
and j2 = 1. From (9.1 .3) we have

q(p — 2, 1, 0, . . . , 0) = (p 2 — 3p + 4)/2 .

	

(9 .1 .7)

Therefore, from (9 .1 .4), we may expres s

gp)/gpo) =
2p(p — 1)/2 P .

	

(9 .1 .8)

Similarly, we find tha t

gp3)lg(po)
= 24p(p — 1)(p — 2)/( 3 .22P)

	

(9.1 .9)

and

44)/g'°) = p(p — 1 ) (p — 2) (p — 3)(23/22P + 26/23P ) .

	

(9 .1 .10)

Lemma For each positive integer n
n- 1

gp - / g
p

k )
k=0

(9 .1 .11)

Proof of Lemma This is accomplished by first establishing upper bound s
for g(pk) . For each k, we consider those partitions (j) of p with j 1 = p — k.
On substituting j 1 = p — k and j2 = k/2 in the right side of (9 .1.3), an uppe r
bound is obtained for q(j) :

q(j)

	

( P2 ) + (k — pk + k2/2).

	

(9 .1 .12)

Furthermore, the number of permutations of p objects with exactly (p — k)
objects fixed is less than or equal to p !/(p — k) ! (see Riordan [R15, p. 59]).
Therefore, we can write

gpk) <: 1	p	 p!	 2(Z)+(k-pk+k2/2)/ 2

	

) (p—	 k))

	

(9 .1 .13)

Since p !/(p — k) ! is bounded by pk , the bound for gp,k may be increased to
yield

g(
p
k) < g(p0)pk/(2(P-

1 -k/2)/2)k

	

(9 .1 .14)

We always have k < p, and therefore

g(
p
k) ~ g(p0)(p/(2(P/4-1/2)))k•

	

(9 .1 .15)
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On summing from k = n to p, we have

L-~ gP) < gP0)

	

(

	

.
k==n

	

k=n

	

2p
/2p/4) k

But the sum on the right side of (9 .1 .16) is the partial sum of a geometric
series whose common ratio approaches zero as p increases. Therefore

=:
gp

k) ~ cgp)( 2p/2P/4 ) n

	

(9.1 .17)
k== n

where c > 1 is close to 1 for large p .
In particular, since

n-1

	

n- 1
E g pk) ~ gp ~ E gp) + gp0 ) e (pn/2pn/4 )

k=0

	

k= 0
we have on division

n- 1
1 < gp/

	

g (pk) < 1 + cP(p n/2Pn/4 ) ,
k= 0

which verifies (9.1 .11), and proves the lemma .
We can now continue with the proof of the theorem . To secure the erro r

on the bound, we return to (9 .1 .14) and note that with k = n,

r(n) < 2(n/2+n 2 /4)g (0)pn/2pn/ 2

and hence
2 n
E gpk) _ (gp° )y (pn/2pn12 )

k = n
From (9.1 .17) it follows that

p
gpk) — (gp°))&((Jp/2P/4)2n+ 1)

.
k=2n+ 1

But since
CQ((,/p/2P/4)2n+1) _ e(p n /2Pn/2 ) •

We can combine (9.1 .21) and (9.1 .22) to find
P

E gpk) _ (gp0) )e(pn/2pn/2 )k = n

The proof of the theorem (9 .1 .2) is completed by setting n = 3 in (9.1 .24) and
adding gp° ) + gP ) to both sides .

	

//

(9 .1 .16)

(9 .1 .18)

(9 .1 .19)

(9.1 .20)

(9.1 .21 )

(9.1 .22)

(9 .1 .23)

(9.1 .24)
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We conclude this section by improving the formula for g P with g(p3) and
44) . From (9 .1 .9), (9 .1 .10). and (9 .1 .24) we have

2(')	 	 Z 	

	

P	 — P	 p!	 (3p— 7)/(3p —9)

	

P5
gp = ~ 1 + 2	

')p
+ 8 (p—	 4)!	 22 P	 + 0 25P/2

(9 .1 .25)

Note that the second part of gp ) is incorporated in the error term . Formula
(9.1 .2) was used by Oberschelp [01] to obtain the first and second approxi-
mations in Table 9 .1 .1 for gP and (9 .1 .25) for the third approximations .

TABLE 9.1 . 1

APPROXIMATIONS FOR THE NUMBER OF GRAPHS

Approximatio n

p

	

gp

	

First

	

Second

	

Third

2 2 1 2 2

3 4 1 .333 3 .333 4

4 11 2.667 6 .667 1 0

5 34 8.533 19 .20 29 .8 7

6 156 45 .51 88 .18 127 . 3
7 1044 416 .1 689 .12 896 .4

8 12 346 6 660 9 570 11 120

9.2 DIGRAPHS

The development of asymptotic formulas for digraphs is similar to tha t
for graphs, and so we shall only sketch the proof of the theorem whic h
provides the formula and the error bound . From formula (5 .1.5) for the cycl e
index of the reduced ordered pair group of Sp , we see that the number q(j)

of line-cycles determined by each permutation which corresponds to th e
partition (j) is

q(j) __ E (kjk

	

1k) + 2 E (r,t)Jrjt•

	

(9.2 .1 )

k

	

r< t

As before, for each k = 0 through p we let

d (pk) = ( i /p !)Eh(j)24cj>,

	

(9.2.2)
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where the sum is over all partitions (j) with j l = p — k . Then the number
dp of digraphs of order p is the sum of the d(pk) and in particula r

d' 0) =
2p2-P

/p!

	

(9.2.3)P

dp2)/d ;,° ) = 22p(p — 1)/2 2P

	

(9 .2.4)

dp3)/d °) = 28P(P — 1 )(p — 2 )/(3 •24P)

	

(9 .2.5 )

and

44)/40) = (p !/(p — 4)!)(2'/24P + 213/2'P ) .

	

(9 .2 .6)

A bound on q(j) is obtained by setting j l = p — k and j2 = k/2 in the
right side of (9 .2.1) :

q(j) 5 p2 — p + k(1 — 2p + k)/2

	

(9 .2 .7)

whenever j 1 = p — k.
Therefore, it follows tha t

(pk) < (p0)(„/2(2p-1-k)/2)k .

As in the case for graphs, it can now be shown tha t
n- 1

dp , E dpk )
k= 0

P

E dpk) _ (d (p°))(9(pn/2Pn) .
k= n

Hence we have the next theorem for digraphs .

Theorem The number dp of digraphs of order p satisfie s

dp= 2P 	 P 1+ 4P(P2	 1)+

	

Pp
P 2	 P

	

2

On finding d (,,i) and d(,4) our result takes the form

PZ- P

dp=2p)	 1+4P(~2P1)+2'	 p !	 (3P—7~/(3P—9) +(9 P P
(p

	

4)!

	

2

(9.2.12)

and

(9.2.8)

(9.2 .9)

(9.2.10)

(9.2.11)
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9.3 GRAPHS WITH A GIVEN NUMBER OF POINTS AND LINES

We have seen that the term 2cD/p ! contributed to Z( (p2 ), 2) by the identity
permutation is asymptotic to the total number of graphs of order p . Hence
it would seem that to approximate the number gp.q of (p, q) graphs, we shoul d
try the contribution to the coefficient of xk in Z(S(p2) , 1 + x) made by the
identity permutation. That this contribution is (T)/p! can be seen when w e
express the graph counting polynomial as follows :

	

Z(S (p2) , 1 + x) = (1
+

x)cD (l + f (x)),

	

(9.3.1 )
P •

with f(x) defined by this equation. One would expect this approximation t o
be valid because ((9))/p! is just by (1 .1 .1) the number of labeled (p, q) graphs
divided by p ! to "remove the labels ." But we shall see that it can only b e
used when q is not near the ends of its range . For example, g p, o = 1 for all p
but ((o))/p! = 1/p! approaches zero as p increases . In fact, if q is a fixed con-
stant then, of course

(()/P!

	

0.

	

(9 .3 .2 )

Bound s on q for which the estimate of gp q is valid were established by Poly a
as mentioned in Ford and Uhlenbeck [FU1] and subsequently improved b y
Oberschelp [01], as in the next theorem . Wright [W7] has recently found a
necessary and sufficient condition for (9 .3.4) ; see Exercise 9.13 .

Theorem If for some E with 0 < E <

(P) — q = e(p3/2-E),
2 2

then the number gP q of (p, q) graphs satisfies

	

gm

	

(q ()/P! .

Proof From the definition of f(x) in (9 .3.1), we have for all p and q

( (DV) !

	

(W)/p !
q

	

< gp , q

	

+ f( 1)2cD/P ! .

	

(9.3.5 )

Hence it suffices to show that if q satisfies condition (9.3.3), then
P

f(1)2(P )

	

2

	

0 .

	

(9.3.6 )
q

(9 .3.3)

(9 .3.4)
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But from the asymptotic behavior of g p in (9 .1 .2) we observe that

f( 1 ) = &(p2/2P ) .

Therefore we need to show that for suitable values of q,

(9 .3 .7 )

F(p, q) = (2(Z)-Pp2 )
(2

q
O. (9 .3 .8 )

To do this we prove that there are positive constant s
such that for all p sufficiently large

c and S with 0 < (5 < i

21 2

	

q < cp l+a (9.3.9)

implies (9 .3 .8) . Then E can be chosen so that (9 .3.3) holds .
Now F(p, q), the left side of (9 .3 .8), is largest when q is at the end of its

range. Thus it follows from (9.3.9) that

(p2 2 (p2 - 3 P)/ 2
)

F(p, q)

	

l~'

	

(2)

	

(9.3.10)

— cp

On applying Stirling's formula to the factorials in the denominator o f
the right side of (9 .3.10) we have for some constant C 1 and p sufficiently large

22(P Z - 3P)/ 2
F(p, q)

	

C 1 (p	 ) a°pbbp(a b ) 1/2

	

(9.3.11 )( p)(f)+1/2

	

P P

	

P P

where

ap = Z

	

— cp1+a,

	

(9 .3.12)
2

b =
1
—( P + cn1 + a

P 2 2

Since (apbp )1/2 = 0(p2 ), we can simplify the bound on F(p, q) further and
write, for some constant C 2

	 P
4

F (p , q) —< C 2(2p(p2	 p)(2)+1/2)(p2 —

	

4cp1+a)°"(p2 — p + 4cp1+a)bp .

2

and

(9 .3 .13)

(9 .3 .14)
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and

On factoring and using the fact that a p + b y = (Z), we have

F(p, (I)

	

C2

	

p4

	

z - a

	

4cp1+b aP

<

	

—(2P(p2 _ p)(Z)+
1/2) P

	

P

	

P2 — P

4cp1
+a bp

x (P2

	

P) bP 1 +
P2 — P

p4

	

4cp1+a aP

	

4cp1+s b P

<
C2 2P(P2 — p)1/2

1 P2
—

P

	

1 + P2 —
P

It suits our purpose to express the last inequality as follow s
p4

	

cp l +(5

	

cp 1 +a ( Z )/ 2

F (P, q) < C2
2p(P2 - P)1/2

1 -
(P2)/2

) (

	

)

+ (z)/2

1+a

	

1+a

	

c P1+ 6

(z )
x

	

1 +
cp

2 / 1 — cp/2

	

(9 .3 .16)
(2)/

Next we use the identitie s

1 —
cp 1+s

	

+ cp l+s (2)/2 —
1 _ c2p2+2a/((z)/2)

(z)/ 2

(5)/2

	

(5)/2

	

(5)/2

(9.3.15)

(9.3 .17)

+
c2p2+26/((2)/2) cp +o

(9.3.18 )
1 + cP

1+a cp i+d

cp l+ a

1 -

C2p2 + 26
1((2)/2 )

cp 1+ b

It can be shown that for any x, y > 0 ,

E,x)/(y-x) < (1 + x/y)'' < e x

	

(9 .3.19)

and furthermore for y > x > 0 ,

e — xv,(l — x) < (1 — x/y) y < e —x.

	

(9.3.20)

On applying (9 .3 .19) and (9 .3.20) to (9.3 .17) and (9 .3.18) we hav e

F(P, q) < C2(P4/(2P(P2 — P)1/2) exp s(P)

	

(9 .3.21)

where

= 4c2
2a 1 —

1 + 4cpa
s(p)

	

p
P

(9 .3 .22)
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If 8 < 1, we have for any constant K > 4c2 ,

s(p) Kp2a

provided p is large .
Thus we have for large p ,

F(p, q) < C2P4eKp2a /(2P(p2

9 ASYMPTOTIC S

(9 .3 .23)

(9.3.24)

where K > 4c2 and 8 < 1 .
If we choose S < 2, then

eK
n

F(p, q) = (9(p') 2

	

(9 .3 .25)

Hence F(p, q) 0 provided K < log 2 . For K to exist, then, the only require-
ment is that

4c 2 < log 2.

	

(9 .3 .26)

Therefore with c = 0.416, and 8 = 1, formula (9 .3.9) implies (9 .3 .8) and
the proof is completed .

	

//

Note that the range of q covers most graphs ; that is

gn,9

	

gn

	

(9.3.27)

where the sum is over all q which satisfy (9.3.9).
The corresponding theorem for directed graphs is stated next .

Theorem If for some E, with 0 < <

e(p3/2 -E) (9.3.28)

then the num'"er dp,9 of digraphs with p points and q lines satisfies

d
P

	

— 1 )
p

4

	

p! .

	

(9 .3 .29)

The proof is similar to that of (9 .3.4) and on carrying out the details, on e
finds that if

then (9.3 .29) holds .

< 0.832p 312 ,

	

(9 .3 .30)
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9.4 CONNECTED GRAPHS AND BLOCK S

Following Riddell [R14], and Ford and Uhlenbeck [FU1] we shall firs t
deal with labeled graphs and then obtain the corresponding results fo r
unlabeled graphs by observing that "most graphs can be considered to b e
labeled."

Theorem The number G p of labeled graphs of order p is asymptotic to
the number Cp of connected labeled graphs :

Gp - Cp .

	

(9.4 .1 )

Thus almost all labeled graphs are connected .

Proof On dividing both sides of equation (1 .2.1) by Gp , it follows that
1 p- i

Cp/Gp = 1 - - E

k

Gp-kC k/Gp .

	

(9 .4 .2)
P k= 1

Since Cp < Gp = 2 (z) for all p we can write the inequalit y

1 > Cp/Gp > 1 - F(p),

	

(9 .4.3)

where
1p- '

	

F(p ) _ - E k k2 - k(p - k) .

	

(9.4.4)
P k= 1

Therefore to establish (9 .4.1) it is sufficient to show that limp_ 3, F(p) = 0.
Since k/p < 1, we have

p- 1

F(p) <_

	

P 2-k(p-k) .

	

(9.4.5)
k=1 k

Now the summands on the right side of (9 .4.5) are end-symmetric with respect
to k and hence

[p/2]
(P) 2 k(P k )

F(P)S 2

	

_ k

.
k=l k

But (k) < p k and p - k > p/2 and therefore

[p/2]

	

k

F(P) < 2

	

(2P
/2 .

k=1

(9.4.6)

(9 .4 .7)
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The sum in (9 .4.7) is a geometric series whose common ratio approache s
zero as p increases and hence F(p) = &(p/2PI2 ) . Therefore limp_ F(p) = 0

and the proof is completed .

	

//

Wright [W4] has investigated the asymptotic behavior of the coefficient s
of two generating functions a(x) and b(x) when they satisfy a(x) = exp b(x) .
The preceding theorem and other facts can be deduced from his results .

Our next task is to establish the same result as (9 .4.1) for unlabeled graphs .
But we proceed by first showing that most graphs are identity graphs, having
only the trivial automorphism group . This fact, known to Riddell [R14] ,
Ford and Uhlenbeck [FU1], Erdos and Renyi [ER1], and others is stated next .

Theorem The number of graphs of order p is asymptotic to the number o f
identity graphs of order p, i .e ., most graphs of order p can be labeled in p ! ways .

Proof On summing equation (1 .1 .3) for the number of ways of labeling a
graph over all graphs of order p one obtain s

p!/IF(G)I = 2(D .

On dividing both sides of (9.4.8) by p ! and applying (9 .1.2) we have

EIr(G)L 1 gP .

(9.4.8)

(9.4.9)

Since the contribution of each graph to the sum in (9 .4.9) is less than or equa l
to 1, most graphs must contribute 1 and the theorem is proved .

	

//

As a consequence of this theorem, we have the next far-reaching observa -
tion which allows us to obtain some asymptotic results for unlabeled graph s
from the corresponding results for labeled graphs and conversely .

Metatheorem Most labeled graphs have property "P" if and only if mos t
unlabeled graphs have property "P".

From this metatheorem and (9 .4.1) follows the companion to (9 .4.1) for
connected graphs .

Corollary Almost all graphs are connected .

To establish the next theorem we use some of the results of Section 1 .3 on
labeled blocks. Recall that BP is the number of labeled blocks of order p .
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Theorem

	

Almost all labeled graphs are blocks, i .e ., Bp — Gp .

Proof As in Section 1 .3, R(x) is the exponential series for rooted, connected ,
labeled graphs . We let the exponential series H(x), with coefficients Hk , be
defined by

cc,

H(x) = E Bk(R(x))k — 1 /(k — 1) !

	

(9 .4.10)
k= 2

From (1 .3.8) it follows that H(x) = R 1 (x)/x . Then on substitution in (1 .3.7)
and (1 .3.4), we have

log E Ck+ 1xk/k! = H(x) .

	

(9.4.11)
k= 0

By the same reasoning used to prove (9 .4.1), it can be established tha t

Cp+ 1 ti Hp .

	

(9.4.12)

Since H(x) = R 1 (x)/x, it also follows that (p + 1)Hp is the number o f
rooted, connected, labeled graphs with p + 1 points and exactly one block
at the root. Hence we can define F(p) by

Hp = Bp+ 1 + F(p)/(p + 1)

	

(9 .4.13)

so that F(p) is the number of rooted, connected, labeled graphs with p + 1
points, exactly one block at the root, and no more than p points in tha t
block. It is easy to see that F(p) has the bound

F(p) <

	

p + k

	

kGkGp+ 1 _ k(p + 1 — k) .

	

(9.4.14)
k= 2

Now to see that Bp is asymptotic to Cp and hence to Gp it is sufficient to sho w
that

lim F(p)/((p + 1)2(" ')) = 0
p-+ co

and this is easily done as in the proof of (9 .4.1) .
On applying the metatheorem we have the next result .

Corollary Almost all (unlabeled) graphs are blocks .

Although no formal proof is known, we do not hesitate to assert th e
following statement .

Conjecture For every positive integer n, almost all graphs are n-connected .
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From the general methods and results provided in this chapter one ca n
determine the scarcity or preponderance of various classes of graphs . For
example, from the formulas (6 .2.3) and (6.2.7) for self-complementary graphs
and digraphs the following asymptotic determination [P5] can be mad e
using essentially the same method used to prove (9 .1 .2). Recall that the
number of points in a self-complementary graph is congruent to 0 or 1
modulo 4 .

Theorem The numbers g4n and g4n+ ~ of self-complementary graphs satisfy

and

g4n = (2222 f/n!)(1 + n(n — 1)25 -4n +

	

2(n 3 /26n)) (9.4.15)

g4n+ i = (22112 -n/n!)(1 + n(n — 1)24 - 4n + (9(n3/26n))
(9.4.16)

Asymptotic results for self-complementary digraphs are summarized a s
follows .

Theorem The asymptotic behavior of the number of self-complementary
digraphs can be determined by that of self-complementary graphs, sinc e

d2n — g4n

	

and d2n + 1

	

2nti g4n+1 '

We conclude this section by observing the expected result that self -
complementary graphs and digraphs are relatively scarce . From equation
(9.3.4) we know the asymptotic behavior of the number g4n,,. of graphs with
4n points and r = (?)/2 lines . With this result and formula (9 .4.15), it can be
shown that

g4,/g4n,,.

	

0 .

	

(9 .4.17)

Corresponding results hold for g4n+~ and for digraphs. The consequences
are stated in the next corollary .

Corollary Not only are almost all graphs and digraphs not self-comple-
mentary, but this holds even for all (p, p(p — 1)/4)-graphs and correspond-
ingly for digraphs .

9.5 TREES

Polya [P8] determined asymptotic formulas for the saturated hydro -
carbons and other chemical compounds by treating the generating function s
as ordinary analytic functions so that the coefficients could be estimate d
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by means of the Cauchy integral formula . Otter [04] observed that the
method could be applied to ordinary trees, and Ford and Uhlenbeck [FU1 ]
found that the method served to approximate the numbers of numerous
treelike structures . In this section we shall discuss Otter's results for ordinar y
trees and hopefully supply enough of the details so that the reader may appl y
the method to trees of any species .

We require several lemmas, the first of which allows us to treat the gener -
ating functions for all trees and rooted trees as analytic functions .

Lemma The power series T(x) for rooted trees converges in a circle o f
radius ri >

Proof The following formula for the number of rooted trees of order p + 1

is readily derived from (3 .1 .9).

p
Tp+ ,= ( 1/p) E kTk

	

Tp+1 — ks •
k=1

	

k<ks< p

But since the coefficients of T(x) are increasing we also hav e

Tp+i—ks ~ (P/k)Tp+1—k ,
k<ks< p

and therefore
p

	

Tp+ 1 G t Tk Tp+ 1 —k •

	

(9.5 .3 )
k= 1

Now we define another power series which will bound T(x) above :

f(x) = E B kxk

	

(9 .5 .4)
k= 1

where B 1 = 1, and for p >: 1
p

Bp+1 =

	

BkBp+1—k•

	

(9.5.5)
k= 1

It follows by induction from (9.5.3) that Tp < Bp for all p . But y = f(x)
satisfies

(9.5 .1 )

(9.5 .2)

y2 -y+x=0.

On solving this equation for y as a function of x, one obtain s

y=1(1 ±(1 -4x) 1 "2 ).

and since f(0) = 0, we have

f(x ) = 1( 1 — (1 — 4x) 1/2 ) .

(9 .5 .6 )

(9.5.7)

(9.5.8)
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When this is expanded, using the binomial theorem, into a power series in x ,
the coefficients are precisely those in equation (3.3.23) which counts planted
plane trees, as well as all other configurations enumerated by Catala n
numbers. On developing the Taylor series for f (x) at the origin we can con-
clude that for each p

1B = _

p

(2)(_1)P_14P,

thus establishing a bound for T, . Furthermore, it follows from (9 .5.8) that the
radius of convergence of the series >k Bkxk is a and hence that of T(x) is
at least

By virtue of formula (3.2.4) which expresses the series t(x) for trees in
terms of T(x), an immediate consequence of this lemma is that T(x) an d
t(x) have the same radius of convergence! In addition, T(x) and t(x) boun d
the corresponding series for trees of any species, and hence the series for the
latter also converge . These facts were first found by Polya [P8] .

At this point we observe that since all the coefficients of the generatin g
function T(x) are positive, rl is a singularity of T(x) and hence of t(x) . On
the other hand, T(x) converges with x = rl . To establish this fact we need the
next statement .

Lemma The limit of T(x) as x —► q— exists and is equal to Lk 1 Tk tl k .

Proof Since T(x) satisfies the functional equation (3 .1 .4), we have for all x
in (0,r~)

cc

log(T(x)/x) = T(x) + E T(xk)/k .

	

(9 .5 .10)
k= 2

From this it follows that

(9.5 .9)

T(x)/x

	

1
log(T(x)/x)

	

x '
(9 .5 .11 )

	

and hence T(x) is bounded on the interval (0,

	

Since T(x) is monotone ,
the left-hand limit at ii exists and we let

bo = lim T(x) .

	

(9.5.12)

It now follows quickly that bo = T(;1) .

	

/ /

The value of bo is determined by the next lemma .
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Lemma The series T(x) for rooted trees has the property tha t

T(,1) = 1 .

	

(9.5.13)

Proof First we define the complex valued function F(x, y) for complex x
and y by

co
F(x, y) = x exp y +

	

T(xk)/k — y

	

(9 .5 .14)
k= 2

and consider the equation

F(x, y) = 0 .

	

(9.5.15)

From (3.1 .4) we can show that y = T(x) is the unique analytic solution o f
(9 .5 .15), and we know it has a singularity at x = n . The preceding lemm a
implies that F(q, bo) = 0 and furthermore it is easy to see that F(x, y) is
analytic in each variable separately in neighborhoods of and bo .

On differentiating (9 .5 .14) with respect to y, we find

SF/0 y = F(x, y) + y — 1 .

	

(9.5.16)

Since F(ri, bo) = 0, we know that this partial derivative at (,7, b o ) is given by

SF
by (rl, b o) = bo — 1 .

Furthermore, this partial derivative must be zero at (r~, bo), i .e . bo = 1 .
Otherwise, by the implicit function theorem, there is a unique solutio n
y = f (x) of (9 .5 .15) which is analytic in a neighborhood of 17, in particula r
at r~ itself. But such a solution would have to be y = T(x) and we know that the
latter is not analytic at x = q, proving (9 .5 .13) .

	

/ /

Note that it follows immediately from (9 .5.16) that the second partia l
derivative of F(x, y) with respect to y is not zero at (al, 1) .

For the sake of brevity, we omit the proof of the next theorem which is a
combination of the implicit function theorem and observations of Polya ,
Otter, Ford, and Uhlenbeck .

Theorem Let F(x, y) be analytic in each variable separately in some
neighborhood of (xo, yo) and suppose that the following conditions ar e
satisfied :

i. F(xo, yo) = 0 ;
ii. y = f(x) is analytic in Ix' < 1xol and x o is the unique singularity on

the circle of convergence ;

(9 .5 .17)
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iii. if f (x) = E:=o LA:" is the expansion of f at the origin, the n
Yo

iv. F(x, f (x)) = 0 for (x( < xo ;

OF

v. ay
(xo, yo) = 0 ;

a2F

vi.a	 (xo , Yo) ~ 0 .

Then f (x) may be expanded about xo :

f(x) = f (xo) + E ak(xo — x)k/2

	

(9 .5.18)
k= 1

and if a 1 0 0,

-n+ 1/2n - 3/2
0 (9 .5 .19)

and if a 1 = 0 but a 3 # 0

fn
ti

3 a3 xo n+3/2n-5/2 (9 .5.20)
4 n

To apply this theorem, note that the function defined by (9 .5.14) satisfies
all the hypotheses with (x 0 , yo) = (11, 1) and f (x) = T(x) . Hence T(x) may
be expanded as in (9 .5.18) and if a 1 0, the coefficients behave as in (9.5.19) .
It remains to be shown that i f

T(x) = 1 — b 1 ( ;7 — x) 1/2 + b2 (11 — x) + b 3(q — x )3/2 + . . . (9.5.21 )

then b 1 0 and b 3 0 0, and, of course we require approximations to b 1
and q .

On differentiating (9 .5.21) we have

T'(x) = z bl( ;7 — x) -1/2 — b2 + . . .

	

(9 .5 .22)

where the terms omitted contain 07 — x) 1/2 to the first power at least . On
multiplying both sides of (9 .5.22) by 1 — T(x) as obtained from (9 .5 .21 )
we have

T'(x) (1 — T(x)) =

	

+ . . .

	

(9 .5 .23)

where, again, the terms omitted contain ('i — x) 1/2 to at least the first power .
Hence

llm T'(x) (1 — T(x)) = i b

	

(9.5.24)
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On differentiating (3 .1 .4), however, one obtain s

T'(x) = T(x)/x + T(x) E T'(xk)xk - 1 (9.5.25)
k= 1

and therefore

T'(x) (1 — T'(x)) = T(x)/x + T(x) E T'(xk)x k - 1 . (9.5.26)
k= 2

Thus the limit in (9 .5.24) can also be obtained from (9 .5.26) and hence

2b1 = _ + E T' (yi k)ik-1 .

k=2

	

l
(9.5 .27)

Using (3 .1 .4) and (9.5.13), Otter estimated i = 0.3383219. Then from an
equation similar to (9 .5.27) he estimated b 1 and found that

b1)7 1/2

	

= 0.4399237 • • •

	

(9 .5.28)
2\/ n

with b l = 2.681127. Therefore, making use also of (9 .5.20), the behavior of th e
number of rooted trees can be stated as follows .

Theorem The number T, of rooted trees of order p satisfies

17-P

	

P
TP = 0.4399237	 3/2 +

	

5/2 .

	

(9.5.29)
P

	

P

Now we consider the series t(x) for (unrooted) trees . From (3 .2.4) and
(9.5.21) it follows that we may writ e

t(x) = a0 - a l (ri - x)' 12 + a2(ri - x) + a 3 (ri - x) 3/2 + . . . , (9.5.30)

hence

t' (x) = i a1( 11 — x) -1~2 — a2 — i
a3(,

i — x)"2 + . . . .

	

(9.5.31 )

On differentiating (3 .2.4), however, we find

t'(x) = T'(x)(1 — T(x)) + T'(x2)x

	

(9.5.32)

and from (9.5.24) it follows that lim x~n- t'(x) exists. Hence a l = O. Next we
express the second derivative t"(x) in two ways. From (9.5.31) with a 1 = 0 we
have

t"(.x) = a a3(rl — x)- 1/2 + . . . .

	

(9 .5 .33)
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TABLE 9.5 . 1

APPROXIMATIONS FOR THE NUMBER OF TREES

p

	

7p

	

'Pp

	

t p

	

t p

1

	

1

	

1

	

1

	

2

2

	

1

	

1

	

1

	

1

3

	

2

	

2

	

1

	

1

4

	

4

	

4

	

2

	

2

5

	

9

	

9

	

3

	

2

10

	

719

	

708

	

106

	

8 6

15

	

87 811

	

86 965

	

7 741

	

7 050

18

	

1 721 159

	

1 708 440

	

123 867

	

114 875

On substituting the right side of (9 .5 .26) into (9 .5.32) and differentiating ,
we find that

	

t"(x) = T '(x) 1 /x +

	

T'(xk)x k -1 + • • • ,

	

(9.5.34)
k= 2

where the terms omitted are bounded near ;7 . Then from (9.5.22) and (9 .5 .27)
we have

t"(x) = 414(~1 — x)-1"2 + . . . ,

	

(9.5.35)

and therefore a 3 = bi/3. Then the behavior of the number of trees can b e
deduced from (9 .5.20) on finding (b i/4 )13/2 = 0 .5349485 . . . .

Theorem The number tp of trees of order p satisfies

	 -P

	

- Ptp = 0.5349485 5/2 + ( X 712 .

	

(9.5.36)
P

	

P
We conclude with Otter's table (9 .5 .1) which compares tp and Tp with the

values given by (9.5 .36) and (9 .5 .29) without the error terms denoted by tp
and Tp .

EXERCISES

	

9.1 (a) Relations, asyrptotically .

	

(Oberschelp [01])
(b) Tournaments, asymptotically .

	

(Moon [M2] )

9.2 Connected (p, q) graphs (labeled and unlabeled), asymptotically .
(Erdos and Renyi [ER1] ; Wright [W6])
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9.3 Investigate the relation

F
1+ E x" = exp E x

n= 1 n

	

n=1 n .

to determine how rapidly fn must increase to insure that lim n _ F,,/f, = 1 .
(Hint : Read the Wright papers.) (Wright [W4] )

9.4 For any positive k, the number gP of graphs satisfie s

2(';)

	

k

	

((

	

( p2 k

	

g P = -- 1 + E ~Pi(p)2 - kP + 6	 2kp
P !

	

i =

where 9 i(p) = p(p — 1) . • • (p — i)`Pi (p) and `P i(p) is a polynomial of degree
i — 1 in p. (Wright [W5])
9.5 The number of labeled graphs of order p with no triangles is asymptoti c
to 20' 2/4)(1 + o(1)). (D. Kleitman )

9.6 The number t2n of self-complementary tournaments equal s
(2n2-n/n!)(1 + o(1)) .

Self-complementary tournaments of odd order, asymptotically .
9.7 Almost all :
(a) tournaments are strong ;

	

(Moon and Moser [MM1] )
(b) digraphs are strong ;

	

(Moon and Moser [MM2] )
(c) digraphs are hamiltonian ;

	

(Moon [M5] )
(d) graphs are hamiltonian. (Moon [M5])
9.8 Connected labeled functional digraphs of order p are asymptotic t o
(ir/2)1j2pP- 112 (Renyi [R13] ; Katz [K2] )
9.9 Pure 2-dimensional simplicial complexes of order p are asymptotic to
2(3) /p ! .

9.10 The probability that a random point of the labeled trees of order p
is an endpoint approaches 1/e as p increases. (Renyi [R12])
9.11 Almost all trees have nontrivial automorphisms .

(Ford and Uhlenbeck [FU1] )
9 .12 A sufficient condition for (9 .3 .4) is min (q, (2) — q) > 3p log p .

(Wright [W7])

9.13 A necessary and sufficient condition for (9.3.4) i s

12 min(q ,
q'(P2	 q)

— log p = co .
P -'

	

p

(Wright [W7])



I do not know what I may appear to the world, but to

myself I seem to have been only like a boy playing on

the sea-shore, and diverting myself now and then

finding a smooth pebble, or a prettier shell than

ordinary, whilst the great ocean of truth lay all

undiscovered before me .

Isaac Newton

Chapter ro UNSOLVED

PROBLEMS

Although various sophisticated, recondite, and specialized terminology
may confuse the situation, the fact is that very many pattern and con -
figuration problems become graphical in nature when properly reformulated .
Furthermore, the conceptual difficulty of the problem is more easily identi-
fied when recast in terms of graphs or variations on graphs . We present a
wide range of graphical enumeration problems, containing adequat e
material to occupy research scholars for generations .

There exist several earlier lists of exactly twenty seven unsolved problems
in graphical enumeration . That restriction is now abandoned and myriad s
of open questions are exposed . In this and the remaining sections, we list th e
problem areas as P1 .1, P1 .2, . . . . Each such area in turn may contain severa l
individual problems which will be indicated. In some cases, data in the for m
of the first few terms of the generating function will be included .

We include no explicit problems on counting trees of various types ,
for the existing methods appear always adequate . For counting labeled trees ,
see Moon [M4] and Chapter 1, and for unlabeled trees, see Chapter 3 .

216
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10.1 LABELED GRAPHS

The succeeding sections include counting questions open for both labele d
and unlabeled graphs . Usually the labeled case is more manageable than th e
unlabeled case because there is less symmetry involved . However there are
two notable exceptions for which unlabeled configurations have been counte d
but not the labeled ones :

P1 .1 Labeled self-converse digraph s
The unlabeled self-converse digraphs were counted in Chapter 6 using

the Power Group Enumeration Theorem .

P1 .2 Labeled self-complementary graph s
The number of self-complementary graphs and digraphs was determine d

by Read [R6], see Chapter 6 .

The labeled cases for both of these problems are untouched .

10.2 DIGRAPHS

There are many unsolved problems involving digraphs which are bette r
stated later along with the corresponding problems for graphs in the succeed -
ing sections. Nevertheless there are some which merit separate mention her e
because they involve structural properties exclusive to digraphs .

P2.1 Strong digraphs
Recall from Chapter 5 that a digraph is strong if each pair of points are

mutually reachable by directed paths. Our good friend R. W. Robinson
succeeded in enumerating both labeled and unlabeled strong digraph s
several years ago, but has not yet found the time to write up these interesting ,
important, and difficult results . It is to be hoped that he will do so within th e
present decade. His methods involve the condensation D* of an arbitrary
digraph D in which the points of D* are the strong components of D, together
with his techniques of cycle index sums developed in Chapter 8 .

Figure 10.2. 1

The strong digraphs of order 3 .
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All the digraphs of order 4 are listed in [H1, pp . 227-330] . There are 8 3
strong digraphs of order 4 as indicated in [HP6] . Hence their counting serie s
begins :

x + x2 + 5x2 + 83x4 + •• •

P2.2 Unilateral digraphs
A digraph is unilaterally connected or unilateral if for any two points ,

at least one is reachable from the other . Although its unilateral compo-
nents do not partition a digraph, the method of Robinson mentioned above
for counting strong digraphs can still be specialized to unilateral digraphs ,
whose counting series as calculated by R . C. Read begin s

x + 2x2 + 11x3 + 172x4 + 8603x 5 + - .

But by a theorem in [HNC1, p . 66], a digraph is unilateral if and only if it s
condensation contains a unique spanning path . For this reason, a suitable
modification of the counting of strong digraphs might serve to count uni-
lateral digraphs, and this is in fact Robinson's approach which he has not a s
yet published or even written .

P2.3 Digraphs with a sourc e
A point in a digraph is a source if all other points can be reached from it .

The directional dual is a sink. Of course there are the same number of di -
graphs with a source as with a sink, as these are converse collections . The
series for these starts

x + 2x2 + 12x 3 + 184x4 + • .

In a strong digraph, every point is both a source and a sink. The countin g
of digraphs with both a source and a sink is also open . Robinson also claims
that he can count these kinds of digraphs .

P2.4 Transitive digraphs
A digraph is transitive if the presence of arcs uv and vw implies that of

arc uw. It is very easy to see that transitive digraphs of order p correspon d
precisely to finite topologies on a set of p elements . These have only been
enumerated in the labeled case [EHL1], using Stirling numbers of the second
kind.

The first four terms in the series for unlabeled transitive digraphs ar e

x+3x2 +9x3 +32x4 +

Even the next term is unknown. For the labeled case, the first nine term s
have been computed, and each coefficient takes exponentially more com-
puter time ; see Appendix I .



10.3 GRAPHS WITH GIVEN STRUCTURAL PROPERTIES

	

21 9

P2.5 Digraphs both self-complementary and self-converse
The only digraphs of order 3 that are both self-complementary and self -

converse are the cyclic and transitive triples . The counting series start s

x+x2 +2x3 +4x4 + .

This is an interesting new type of problem which seems to call for an appro -
priate generalization of Burnside's Lemma .

P2.6 Eulerian digraph s
Eulerian graphs have been counted also by Robinson [R18], but th e

techniques are not adaptable to the corresponding problem for digraphs .
The counting series for eulerian digraphs begin s

x + x 2 + 3x 3 + 12x4 + 68x 5 + ••• .

A. Kotzig raised the special case of this question for eulerian tournaments ,
whose series begins

x+x 3 +x 5 + 3x ' + •

10.3 GRAPHS WITH GIVEN STRUCTURAL PROPERTIES

In this book we have shown how to count many graphs with specifie d
structural properties. Typical examples involving cycles include trees ,
unicyclic graphs, and functional digraphs . Concerning connectivity, we have
counted connected graphs, blocks and block-graphs . We shall consider i n
this section eight categories of graphs :

a. hamiltonian

	

e. symmetric graphs
b. eulerian (p, q) graphs

	

f. graphs with a square roo t
c. graphs with local subgraphs

	

g. line and total graphs
d. identity graphs

	

h. clique and interval graphs

Each of these contains in turn several individual counting problems, s o
that there are many questions in this section . Furthermore, whenever a ne w
structural property is introduced into the graphical literature, one can take
this as a challenge to find how many such graphs exist .

P3.1 Hamiltonian graphs
A graph or digraph is hamiltonian if it contains a spanning cycle . These

have not been counted for labeled or unlabeled graphs or digraphs . The
series for unlabeled graphs begin s

x33 + 3x4 + 8x 5 + 48x 6 + • ,
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while that for unlabeled digraphs start s

x2 + 4x3 -F 60x4 + • .

This is the most publicized special case Qf graphs containing a specifie d
subgraph, namely a spanning cycle . One can also stipulate graphs wit h
other -kinds of subgraphs such as a 1-factor, a 1-basis, cycles of given length ,
or complete graphs of given order . We will elaborate on this theme in Section
10.6.

P3 .2 Eulerian graphs
Robinson [R18] counted eulerian graphs of order p without regard for th e

number of lines, see Section 4 .7. It is most difficult to count eulerian (p, q)
graphs, where the number of lines is also an enumeration parameter . For
eulerian graphs of order 6, the counting polynomial, where the exponen t
gives the number of lines, is

x6+x'
+ 2x8 +x9 +x10 +x11 + x 12 .

Another interesting parameter for eulerian graphs would involve the
minimum number of cycles whose union is the entire graph . This stems from
the theorem, see [H1, p. 64], that a connected graph is eulerian if and only i f
its set of lines can be partitioned into cycles .

P3 .3 Local subgraph s
Given a graph H, the problem is to find the number of graphs of order p

such that each point lies in a subgraph isomorphic to H. For example, if H
is a triangle, then the series begins

x3 + 2x4 + 7x5 + 37x6 +

We also ask for the number of graphs in which each line lies in a triangle .
Of course, similar questions suggest themselves for digraphs .

P3.4 Identity graphs
There are no nontrivial graphs of order less than 6 which have the identit y

group. For p = 6, there are eight identity graphs. We have seen in Sectio n
9.4 that asymptotically most graphs have the identity group, but there is n o
exact formula for order p. Considering the same problem for digraphs ,
the series begins

x + x2 + 7x 3 + 137x4 +

	

.

Identity trees have been counted [HP14], and also identity unicycli c
graphs and identity functional digraphs by Stockmeyer [S6] . In principle,
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Stockmeyer obtained a formula for the number of graphs with given auto-
morphism group. But its use entails the knowledge of the entire lattice o f
subgroups of the symmetric group S p . Thus while this theoretically includes
the enumeration of the number of identity graphs and digraphs, it cannot b e
properly regarded as a solution to this problem (see Table A10 in Appendi x
II) .

P3 .5 Symmetric graphs
In a point-symmetric graph, the automorphism group is transitive o n

the points . A line-symmetric graph is then defined as expected . A symmetric
graph is both point-symmetric and line-symmetric .

Turner [Ti] counted point-symmetric graphs with a prime number p
of points only. Chao [C3] proved that there exists a symmetric graph of prime
order p, regular of degree n, if and only if n is even and divides p — 1 ; further -
more such a graph is unique up to isomorphism . No other results are known
about the number of symmetric graphs .

P3.6 Graphs with a square roo t
The square G 2 of a graph G has the same points as G, with u and v adjacent

in G2 whenever their distance in G is either 1 or 2. Other powers G3 , G4, . . .
are defined similarly . Graphs which have a square root have been charac-
terized, see [H1, p . 24], and similar results were found for digraphs by Gelle r
[G1]. The counting of graphs and digraphs which have an nth root may no t
be an impossible problem .

P3.7 Line graphs and total graph s
The line graph L(G) has the lines of graph G as its points with adjacency

of lines as in G. A line graph is the line graph of some graph . This concept was
introduced by Whitney [W2] who showed that a line graph H is the line
graph of only one graph unless H = K 3 . Thus the number of connected lin e
graphs of order p > 3 is exactly the number of connected graphs with p lines.
From the table in Cadogan [Cl] giving the number of connected graphs ,
the generating function for connected line graphs with a given number o f
points begins

x + x 2 + 2x3 + 5x4 + 12x5 + 30x6 + 79x' + 227x 8 + • .

The problem here is to find a more direct method, as well as to count lin e
graphs with a given number of points and lines. Such an approach would
probably use one of the structure theorems for line graphs given in [H1 ,
Chapter 8] .

Connected digraphs with q arcs are not the same in number as connected
line digraphs of order q, as shown in [HN3]. Hence we do not even have thi s
circuitous approach to the counting of line digraphs .
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The total graph T(G) has the points and lines of G as its point set, with
adjacency defined more or less as expected ; see [H1, p . 82]. It is known that
the total graph T(G) is the square of the subdivision graph S(G) obtained by
inserting a new point of degree 2 into each line of G . But this does not seem to
facilitate the search for a formula .

P3.8 Clique graphs and interval graphs
A clique of a graph G is a maximal complete subgraph . The clique graph

of G has the cliques of G as its points, with adjacency determined by non -
empty intersection of two cliques . An interval graph has intervals on the real
line as its points, with adjacency again determined by intersection . In a
rigid circuit graph, there are no induced cycles of length greater than three .
These classes of graphs are known to be related to each other by their charac -
terization theorems. For example, clique graphs were characterized struc-
turally by Roberts and Spencer [RS1], as reported in [H1, p . 20] .

10.4 GRAPHS WITH GIVEN PARAMETER

It is much easier to propose enumeration problems than to solve them.
For example, each time a new parameter is discovered our viewpoint im-
mediately formulates an associated counting question . Counting problems
for graphs with given parameters partition themselves naturally into sets o f
parameters which are closely related . Our ten categories are :

a. radius and diameter

	

f. clique numbers
b. girth and circumference

	

g. intersection number
c. minimum and maximum

	

h. arboricity
degrees

	

i . genus and thickness
d. connectivity

	

j . chromatic number s
e. independence and covering

number s

For each of these categories, we define the related invariants and describ e
the partial progress which has been attained .

P4.1 Radius and diameter
The eccentricity e(v) of a point v of a graph G is the maximum distance

between v and any other point . The radius r(G) is the minimum eccentricit y
in G and the diameter d(G) is the maximum .

Thus a graph G has radius 1 if and only if it has a point vo adjacent to al l
other points . It is easy to tell the number of graphs of order p with radius I
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because this number is precisely the total number of graphs of order p — 1 .
Even for graphs with radius 2, there are no immediate solutions .

For trees, the diameter is approximately double the radius . Trees wit h
prescribed diameter d were counted in [HP14] . For graphs there is just the
trivial observation that the only p-point graph with d = 1 is K p .

For digraphs, there are corresponding problems. The inradius and out -
radius of' a digraph D were defined in [HNC1, p . 162] . These invariants a s
well as the diameter always exist when D is strong .

P4.2 Girth and circumferenc e
The girth of a graph is the minimum length of a cycle in it ; the circum-

ference the maximum. Let c„ be the number of cycles of length n in a graph G.
How many graphs are there with such a prescribed sequence (c 3 , c4 , c 5 ,

. . . , c p)? The answer to this one general question would count the followin g
structures with only a little more trouble :

a. graphs with given girth, and a fortiori,
b. graphs with given circumference ,
c. graphs containing a triangle ,
d. graphs containing a quadrilateral ,
e. hamiltonian graphs .,
f. graphs with a given number of cycles .

The counting of unicyclic graphs in Section 3 .4 is a very minor step in thi s
direction .

P4.3 Minimum and maximum degree s
The minimum degree (5 and the maximum degree A are natural param-

eters to consider for counting problems. Although there are theoretica l
formulations for counting graphs with a given partition, Parthasarathy
[P7], and digraphs with given partitions [HP3], these do not bear directly o n
S and A.

Consider the graphs with 6 > n > 0. When n = 1, these are all the graphs
with no isolated points, and are readily reckoned . The case n = 2 comprises
all graphs with no endpoints as well as no isolates . These were counted b y
Robinson [R19] using the method of cycle index sums developed for countin g
blocks ; see Section 8 .6. For n = 3, these are the homeomorphically irreduc-
ible graphs with no end points .

P4.4 Connectivity
The connectivity x (line-connectivity 2) of a graph G is the minimu m

number of points (lines) whose removal from G results in a graph which is
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either disconnected or trivial . Then G is n-connected if K n. Thus the num-
ber of graphs with connectivity n is the number of n-connected graphs
minus the number of (n + 1)-connected graphs .

Both 0-connected and 1-connected graphs have been counted since thes e
are the disconnected and connected graphs respectively . The 2-connected
graphs with p > 3 are the same as blocks and these were counted by Robin -
son, see Chapter 8 . The enumeration of n-connected graphs for n > 3
evidently requires more powerful methods than now exist .

One can also ask for the number of graphs with given x and 2, and as a
special case for the number with x = A .

P4.5 Independence and covering numbers
A set of points (lines) is independent if no two are adjacent . The point-

independence number is the maximum number /3 0 of independent points of G,
and the line-independence number /3 1 is defined similarly . A point v and a
line x cover each other if v is on x. The point-covering number a 0 of G is the
minimum number of points which cover all the lines, and the line-coverin g
number a, switches points and lines .

Since it is a classic equation in graph theory that a 0 + /3 0 = p = a 1 + /3 1 ,
we need only mention the problems of counting graphs with given point-
independence number $0 and with given $ 1 . Intuitively these seem easier
than counting graphs with given covering numbers, but by the above equa-
tion there is no difference .

P4.6 Clique numbers
There are several invariants associated with cliques. One of these is the

greatest clique order of G which we have just encountered in the form #0(G) ,
the maximum number of independent points in the complement of G .
Some other clique numbers are :

a. the number of clique s
b. the minimum order of a cliqu e
c. the minimum number of cliques which cover all the points of G
d. similarly for covering the lines of G
e. the maximum number of point-disjoint cliques .

This last invariant is of course the point-independence number of th e
clique graph of G, while the first is the number of points in this clique graph .
In general, any invariant of the clique graph of G becomes in this way a n
invariant of G itself. None of these problems seem promising .
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P4.7 Intersection number
The intersection number co(G) of a given graph G is the minimum number

of elements in a set S such that there is a family S 1 , S2 , . . . , Sp of distinct ,
nonempty subsets of S whose union is S and vi and v; are adjacent in G if and
only if S i n S 0. Another variation on this invariant is wo which differ s
from w only in that the sets Si need not be distinct, so that for example
wo(KP ) = I .

There does not seem to exist any method for counting graphs with give n
intersection number or any of its possible variations .

P4.8 Arboricity
The arboricity of a graph G is the minimum number of line-disjoin t

acyclic subgraphs whose union is G . The maximum number of line-disjoin t
nonacyclic subgraphs whose union is G is called the anarboricity of G. As
noted in [H 13], these constitute a pair of covering (arboricity) and packin g
(anarboricity) invariants . Another such pair is given by the covering pat h
number, which is the smallest number of paths whose union is G, and it s
packing counterpart . Such invariants appear hopeless for use as enumeratio n
parameters, as does also, the number of spanning trees in a graph, called it s
complexity by Brooks, Smith, Stone, and Tutte [BSST1] .

P4.9 Genus, thickness, coarseness, crossing numbe r
These and other topological invariants may well be the most intractabl e

of all as far as enumeration is concerned . The genus y of G is the minimu m
genus of an orientable surface on which G can be embedded with no pair o f
edges intersecting. The thickness 0 is the smallest number of planar sub -
graphs whose union is G . The coarseness is the greatest number of line -
disjoint nonplanar subgraphs whose union is G . And the crossing number v
is the smallest number of pairs of edges which intersect when G is drawn i n
the plane . When G is planar, y = v = 0, 0 = 1, and is not defined . There are
many other related topological invariants of a graph, each at least as hopeles s
for counting as the above four .

P4.10 Chromatic number
The chromatic number x of a graph G is the minimum number of colors

needed for its points so that no two adjacent points have the same color .
The line-chromatic number x' (total-chromatic number x") of G is the chromatic
number of the line graph (total graph) of G . (Some authors call x' the chro-
matic index of a graph .)

A graph G is n-chromatic if x = n, and G is n-colorable if x < n. The
n-colored graphs were counted by Robinson [R17], see Section 4 .5, and the
2-colorable graphs in [HP15] . Even the 3-colorable graphs appear impossibl e
to enumerate at present .
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10.5 SUBGRAPHS OF A GIVEN GRAPH

Most of the problems in this section ask for the number of dissimila r
subgraphs of a given graph G that are isomorphic to a certain graph H .
Thus the group of G determines whether or not two occurrences of subgrap h
H are regarded as equivalent. Analogous questions can also be posed fo r
digraphs .

P5.1 Hamiltonian cycles
The number of spanning cycles in a given graph or digraph can theoret-

ically be expressed in the labeled case using the method of Cartwright an d
Gleason [CG1] in terms of the adjacency matrix . But the calculation of suc h
numbers is forbidding, and becomes even more involved when the numbe r
of similarity classes is desired . Only for special graphs such as Kp can the
answer be written from first combinatorial principles .

The most interesting special case of this problem arises when the give n
graph is the n-cube Q„ because of applications to coding theory . It is easily
observed that there is only one similarity class of spanning cycles in Q 2 and
Q3 . Gilbert [G2] has shown that the series for these begin s

x2 +x3 +9x4 +

	

,

but none of the coefficients are known for n > 4. The number of labeled
hamiltonian cycles in Q„ has also been found only for n < 4 . An undetermined
amount of computer time is required to calculate just the next coefficient .

P5.2 Cycles of a given length
The problem asks for the number of dissimilar cycles of length k in a

graph of order p, generalizing P5 .1 . It is easily solved in special cases . For
example, there is just one similarity class of cycles of length 2k in the complet e
bipartite graph K,„ n when m, n >— k . The answer to the labeled version of th e
same question is (k)(Dk!(k — 1)!/2 . A solution of the labeled problem for
cycles of length 3, 4, and 5 in a given graph or digraph in terms of the adjacenc y
matrix was found in [HM1] .

P5.3 Complete graphs
As mentioned above, the number of triangles K 3 in a given labeled graph

can be calculated . The problem of determining the number of occurrences o f
K,,, n > 3, in a given labeled graph is open. For the unlabeled case, the
knowledge of not only the total number of triangles, but also their behavior
with respect fo the group of the given graph is required to obtain the number
of dissimilar triangles .
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P5.4 Spanning trees
The number of labeled spanning trees of a given labeled graph can b e

calculated using the Matrix-Tree Theorem . But there is no corresponding
method for determining the number of different (nonisomorphic) spannin g
trees of a given graph. The difficulty of the problem is indicated by the exampl e
in which the given graph is the complete graph of order p . Then the numbe r
of different spanning trees is the number of trees of order p, a problem firs t
solved by Cayley . The counting of the number of dissimilar spanning tree s
in a given graph is also open .

P5.5 Factors
Let G be a labeled graph having a 1-factor, that is, a spanning subgraph o f

independent lines ; see [H1, p . 86] . The number of different 1-factors of G i s
not known except in very special cases . For example, Ken has (2n)!/2n !
1-factors and K,, ,,, has just n ! of them .

A factorization of G, if any, is a partition of the lines of G into 1-factors .
It is known that Ken has a 1-factorization but the number of these has no t
been settled except for small n . Recently W. Wallis established that K8
has exactly six 1-factorizations. By an older theorem of Konig, see [H1 ,
p. 85], every regular bigraph such as Kn,n has a 1-factorization, so that the
same question can be asked for these .

P5 .6 Eulerian trails in a given eulerian graph
There is an explicit formula for the number of eulerian trails in a given

digraph, see (1 .8 .2). For graphs, however, no progress has been made .
One possible approach would be to consider all orientations of a given euler-
ian graph G which result in eulerian digraphs D I , D2 , . . . . If e 1 is the number
of eulerian trails in D;, then Ee; is the total number of oriented eulerian
trails G. But this is easier said than done . For example, the special cas e
G = Ken+ requires the availability of the adjacency matrices of all eulerian
tournaments of order 2n + 1 .

10.6 SUPERGRAPHS OF A GIVEN GRAP H

The problems in this section ask for the number of graphs of order p
that are supergraphs of a given graph H. Extremal graph theory may be usefu l
in counting such graphs . For example, with H = K 3 , Turan's theorem shows
that if G has at least [p 2/4] lines then G must contain K 3 . Therefore the
counting problem need only be handled for graphs with less than [p 2/4]
lines. On the other hand, a solution to such a counting problem may solve the
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corresponding extremal problem. Versions of all of these problems also
exist for digraphs .

P6.1 Cycles
Counting supergraphs of a triangle is the same as counting graphs of

girth 3. But supergraphs of the cycle C„ of order n > 4 do not correspond to
graphs of girth n because smaller cycles are not excluded . The series for
supergraphs of C 4 begins

3x4 + 16x 5 + 111x6 + .

P6.2 Complete graphs
The problem of counting the number of supergraphs of K„ has already

arisen in different guises for n = 3. Therefore our interest here focuses on
n > 4. Turan's general theorem solves the associated extremal problem ,
see [H1, p. 18] .

P6.3 Complete bipartite graph s
The problem is to count supergraphs of Km, ,, . Since K222 is a cycle of

order 4, we have already encountered a difficult special case . Observe that
the supergraphs of K 1 .,, are those graphs whose maximum degree is at least n ;
compare problem P4 .3 .

P6.4 Paths
Counting supergraphs of the path P„ of order n is easy for small n . For

example if n = 4, the only connected graphs of order >4 which are not
supergraphs of P,, are the stars K i,m . A solution for each n would involve
knowledge of those connected graphs of order > n whose spanning trees
all have diameter less than n. This problem is related to P5 .4.

10.7 GRAPHS AND COLORIN G

There exists a bona .fide method for settling the 4CC (Four Color Con-
jecture) which depends on the solution of certain graphical enumeratio n
problems :

4CC : Every planar graph is 4-colorable .
EE4CC : The number of planar graphs equals the number of 4-colorabl e

planar graphs. (EE4CC stands for the Enumeration Equivalent
of the 4 Color Conjecture .)
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The counting series for these two classes of graphs are known to have th e
same first 39 coefficients .; see [OS 1] . There is some latitude with regard to two
different degrees of freedom :
1. The parameter can vary. One can use either p points, or p points and q
lines, or q lines, or diameter d, or any other parameter for which there is som e
hope.
2. The type of graph can vary provided only that both the planar graph s
and the 4-colorable planar graphs share the same properties, which ma y
include :

a. planar graphs (as in EE4CC)
b. rooted planar graphs
c. line-rooted planar graph s
d. planar graphs rooted at a triangl e
e. labeled planar graphs
f —j . the preceding five properties with plane graphs in place of planar graph s
k . plane graphs rooted by the following three-stage procedure :

i. Select an arbitrary edge x of a plane graph G .
ii. Orient x arbitrarily .
in. Arbitrarily designate one of the two faces incident with x as the

exterior .

There are q possibilities for step (i) since G has q lines, and two possibilitie s
for each of the other two steps. Multiplying these together, we see that th e
total number of Tutte-orientations of a plane graph is 4q, which is reflecte d
in the paper [HT1] on the automorphism group of a planar graph . Tutte
[T4] provided the definitive comprehensive survey of the art of enumerating
Tutte-oriented plane maps, and we refer the reader to his work for all relate d
information .

P7.1 Planar and plane graphs
All trees are planar, so the number of planar trees equals the number o f

trees. Plane unicyclic graphs are easily counted by using rooted plane tree s
for the figure counting series and taking the dihedral group as the con -
figuration group in Polya's Enumeration Theorem (2 .4.6) .

For both plane and planar graphs, all ten variations (a)—(j) above are
open problems .

P7.2 n-colorable graph s
This has been solved only for n = 2, and is the same as problem P4 .10 .

P7.3 n-colorable planar graph s
This problem has not been solved for any n > 1 . Even for n = 2, it is

subtle because it involves homeomorphisms of K3,3 .
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P7.4 Self-dual plane graphs
Given a plane graph G, its dual G* is constructed as follows : Place a

point in each region of G including the exterior region and if two region s
have a line x in common, join the corresponding points by a line x* crossin g
only x. The result is always a plane general graph in which loops and multipl e
lines are allowed . The tetrahedron is self-dual, while the cube and the octa-
hedron are duals, as are the dodecahedron and the icosahedron .

The confrontation of manageable solutions to P7 .1 and to P7.3 for
n = 4 would settle the EE4CC and hence the 4CC itself . Of course this coul d
also be accomplished by comparing any other pair of classes of plana r
graphs that are obtained in the same way, as for example by the same kind o f
rooting. It is safe to predict that the 4CC will not be settled for the first tim e
by means of the EE4CC . Furthermore, the occasional rumors to the effect
that the 4CC has been solved do not in any way answer these most difficul t
counting questions .

10.8 VARIATIONS ON GRAPHS

There are many configurations which are not graphs per se but are
graphical in nature. Space permits only an indication of the counting
problems for a few of these structures. These include simplicial complexes ,
Latin squares, knots, animals, and chessboard and paving configurations .

P8.1 Simplicial complexe s
A simplicial complex consists of a finite nonempty set V of points and a

collection of subsets of V called simplexes such that every point is a simplex
and every nonnull subset of a simplex is one . The dimension of a simplex S
is IS' — 1 ; the dimension of a complex is the maximum dimension of its
simplexes .

While the number of n-dimensional complexes has only been solved fo r
n = 1 when these become graphs (strictly speaking, graphs which are no t
totally disconnected), there is another special case which can be handled .
In a pure n-complex, every maximal simplex has dimension n or 0. Thus ever y
graph is a pure 1-complex. An indication of how to count pure n-complexe s
is given in [H11] . For example, the counting problem for pure 2-complexe s
with p points is obtained when 1 + x is substituted into the cycle index o f
the triad group Spa) : this group is induced by Sp but acts on 3-subsets o f
objects . A formula for this cycle index appears in [01] . Let s(y) = >spy" be
the generating function for pure three-dimensional simplicial complexes .
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We have found by brutal computation that this function begin s

s(y)=y+y2 +2y3 +5y4 +34y5 +2136y6 +7013488y5 +•• .

Now let spq,. be the total number of complexes with dimension at mos t
two with p points (0-simplexes), q lines (1-simplexes) and r cells (2-simplexes) .
Let sp(x, y) _ >spq,agy' be the counting polynomial for those of order p.
For p = 4, this polynomial is

s4(x,y)= 1 +x+2x2 +x3(3+y)+x4(2+y)+x5(1 + y + y2 )

+ x6 (1 + y + y2 + y 3 + y4).

The problem is to determine s p(x, y) for arbitrary p. It should then be possibl e
to derive the result for higher dimensional complexes .

P8 .2 Latin squares
A Latin square is a square matrix of order n in which each row and column

is a permutation of the integers 1 , 2, . . . , n. If L„ is the number of squares of
order n in which the first row and the first column are in standard orde r
1 , 2, . . . , n, then the total number of latin squares of order n is obviously
n ! (n — 1)!L,, . The following values of L„ for n < 7 are taken from Riorda n
[R15, p . 210] :

x + x2 + x3 + 4x4 + 56x5 + 9408x6 + 16 942 080x' + • .

Latin squares may also be regarded as bicolored graphs K„,„ in which the
lines are also colored. The points u ; of the first color correspond to the rows
of the latin square while the points v i of the other color stand for the columns .
Every line of K,, , ,, is colored with one of the n colors so that each point i s
incident with one line of each color.

The number of Latin squares is reduced if we introduce an equivalence
that allows permutations. of the n symbols and which does not distinguish
between rows, columns or symbols. On this basis, J . J. Seidel (unpublished
notes) compiled the data in the polynomial

x + x2 + x3 + 2x4 + 2x5 + 12x6 + 147x' + .

Let A = [au] and B == [b ig] be two n x n Latin squares. Then" A and B
are called orthogonal if the n2 pairs (a 1 , b 13) are all distinct. The number o f
orthogonal pairs of Latin squares, as well as orthogonal m-tuples is open .

P8 .3 Knots and knot-graphs
The first seven knots in the table in Reidemeister [R11, p . 70], which were

taken from the article by Alexander and Briggs [AB1], are shown in Figure
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5, 5 23,

6,

	

6 2

	

6 3

Figure 10 .8 . 1
The smallest knots .

10.8.1 . Each of these is a plane projection with a minimum number of cross-
ings. To each such minimal plane projection of a knot, it is possible to associ -
ate a graph by taking the crossing points as the vertices and the arcs joining
a pair of consecutive crossing points as the edges . Thus the graphs (actually
multigraphs) of these seven knots are shown in Figure 10.8.2. Obviously
each such graph is regular of degree 4 . A knot-graph is the graph of a minimal
plane projection of a knot. Let Gp, ,, be the. graph of the knot denoted in
Figure 10.8.1 by p,, .

G3, ,

	

G5, 2

G6, , 3G6 ,G6, 2

Figure 10 .8 .2
The smallest knot-graphs .
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Figure 10.8 .3

The knot-graph offour different knots.

As pointed out by Brown [B 1], the graph of a knot is not a knot invariant .
This he verified by presenting the "knot-product" of knots 3 1 and 41 (the
definition of knot-product is reported in [H2]) in two different ways, so that
one of the knot-graphs has four double edges and the other has three .
Thus we must speak of a graph of a knot rather than the graph of a knot !

Conversely, different knots can have the same knot graph ; the most
striking known example being the graph of knots 817, 8 19, 820, and 8 21 ,
all of which have the graph of Figure 10 .8.3 .

Brown then developed the following criterion :

A plane multigraph is a graph of a knot if and only i f

a. it is regular of degree 4 ;
b. it is a block ;
c. the plane curve created by starting at any vertex and any of its edges

and then joining the ends of opposite edges at each vertex is an euleria n
trail .

Several enumeration questions suggest themselves naturally now tha t
we know which graphs are knot graphs .

1. How many knot-graphs are there with p vertices ?

Note that this is a different question from asking for the number of knots i n
view of the fact noted above that the graph of a knot is not a knot invariant .

2. How many knot graphs are there with p vertices and m pairs of multiple
edges? It appears from the available data that always m > 2 .

3. On replacing each pair of double edges by a single edge, a genuin e
graph (rather than a multigraph) results. How many such graphs ar e
there?

4. Which special classes of knot graphs can be identified and enumerated?
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P8.4 Chessboard configuration s
We mention only a few of the many problems associated with layin g

pieces on an n x n chessboard. All these problems may be interpreted i n
terms of graphs, and can be lavishly illustrated .

The rooks problem asks for the number of ways in which n rooks can be
positioned on an n x n board so that no rook can threaten another . Thus
no two rooks are permitted to be in the same row or column. The answer is n !
unless we identify solutions with respect to rotations and reflections of th e
board that preserve the two colors of the squares . In the latter case the numbe r
of different configurations has been computed for n < 7 and the data,
Kraitchik [K5], are given b y

x + x2 + 2x3 + 7x4 + 23x5 + 115x 6 + 694x' +

Any solution of the rooks problem in which no two pieces are on the
same diagonal is clearly a solution of the corresponding queens problem .
The latter is unsolved in both the labeled and unlabeled cases . The numbe r
of configurations with n < 12 has been computed in Kraitchik [K5] when
color-preserving rotations and reflections of the board are allowed . The
data are given by :

x + 2x4 + 10x 5 + 4x 6 + 40x' + 92x8 + 352x9

+ 724x'° + 2680x" + 14 200x 12 +

	

.

Similar problems may be posed for bishops and knights . Variations can
also be introduced by changing the shape of the board to rectangular ,
L shapes or triangles . A more interesting rooks problem from the standpoin t
of enumeration is to determine the number of distinct rook polynomials ,
defined in Riordan [R15, p . 165] .

Another type of chessboard problem asks for the number of differen t
tours the knight can make on an m x n board in which each square is visite d
exactly once . These are of course labeled hamiltonian cycles in a knightlik e
graph of order mn . Numerous partial results may be found in [K5] .

P8.5 Cell growth problem s
All of the "square animals" with at most four cells are shown in Figur e

10.8.4. Thus an animal grows in the plane of adding a square cell of the sam e

n

Figure 10 .8 .4
The smallest square animals .
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l

Figure 10 .8. 5
The smallest holey animal.

size to any of its sides . Furthermore, animals are assumed to be simpl y
connected in that they have no holes .

Read [R4] devised a clever scheme that enabled him to compute the
number of animals, holey or not, with as many as ten cells . These result s
and those of Parkin (unpublished) led to Table 10.8 .1 . Klarner [K4] used
elegant analytic methods to establish lower bounds for both kinds of animals ,
but no formulas have been found from which the number of animals with n
cells can be calculated . Note that the smallest animal not simply connected ,
Figure 10.8.5, has seven cells and is the only "holey animal" of order 7 .
Thus with seven cells there are 107 square animals and just one holey animal .

TABLE 10 .8 . 1

SQUARE ANIMAL S

Cells

	

1

	

2

	

34

	

5

	

6

	

7

	

8

	

9

	

1 0
Animals

	

1

	

1

	

2

	

5

	

12

	

35

	

107

	

363

	

1 248

	

4 27 1
Holey
animals

	

0

	

0

	

0

	

0

	

0

	

0

	

1

	

6

	

37

	

384

There are numerous variations of this problem [H12] . With triangle s
instead of squares as the basic cells, the desired series begin s

x + x2 +x3 +3x4 +4x 5 +

	 V

Figure 10.8 . 6
The smallest triangular animals .
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Figure 10.8 . 7
The smallest hexagonal animals .

With hexagons instead of squares we hav e

x + x2 + 3x3 + 7x4 + 22x 5 + 83x6 +

We can ask for the number of toroidal animals in which the genus of the
underlying surface is 1 instead of 0 . Finally we can use cubes instead of squares
and ask for the number of solid animals. Many other related questions
involving paving problems may be found in Golomb's book [H3], which
show vividly how such constructions lead to tantalizing puzzles .

P8 .6 Ising Problem
Ising [I1] proposed the problem which bears his name and solved i t

for the one-dimensional case . Onsager [02] was first to find a solution to the
two-dimensional problem, but no progress has been made toward solving th e
problem in higher dimensions.

In the two-dimensional lattice graph L,,, , ,, the points are ordered pair s
(i, j), i = 1 , 2, . . . , m ; j = 1, 2, . . . , n. Two points are adjacent if the Euclidea n
distance between them is 1 . Thus L,,, , ,, is the cartesian product P. x P„
of two paths. Frequently, in physical applications these graphs are draw n
on the torus with opposite sides identified . A d-dimensional lattice graph is
defined similarly . The problem is to determine the number A q of differen t
labeled even subgraphs with q lines .

Figure 10.8 . 8
A lattice graph .
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By the area of an even subgraph of a two-dimensional lattice we mean th e
minimum area enclosed by the line-disjoint cycles of this subgraph . The
"two-dimensional Ising problem with magnetic field" asks for the generatin g
function that counts labeled even subgraphs with both the number of line s
and the area as enumeration parameters .

As another variation of the Ising problem, there is the case known in th e
literature as the "interaction between nonnearest neighbors ." Consider th e
supergraph of a lattice graph obtained by adding both diagonals into eac h
of its squares. The problem again is to count the even subgraphs of such a
graph.

For a more detailed discussion of the various Ising problems, one ma y
consult the expository article [H14] .



Truth is truth to the end of reckoning.

W . Shakespeare, Measure for measur e

Appendix I

This appendix presents nine tables that list the number of graphs o f
various kinds . Although much of this information is in the text, it is stil l
convenient to gather these data together here . The tables and their content s
are as follows . In the first two tables the parameters are p points and q lines ;
in all the others, just p points .

Table
Al Graphs
A2 Connected graphs
A3 Graphs, connected graphs, and block s
A4 Digraphs, connected digraphs, and symmetric relations
A5 Self-complementary digraphs and self-converse digraphs and

relations
A6 Labeled finite topologies
A7 Trees, rooted trees, identity trees, and homeomorphically irre-

ducible tree s
A8 Tournament s
A9 Asymptotic approximation to graphs and tournaments .

239



240

	

APPENDIX I

The format of this table for the number of (p, q) graphs follows that in
[HI, p. 214], the main difference being that there are no misprints here .
The table first appeared in [R15, p . 146] .

TABLE A l

THE NUMBER OF (p, q) GRAPH S

l 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 5 5 5 5
4 2 6 9 10 11 1 1
5 1 6 15 21 24 25
6 1 6 21 41 56 63
7 4 24 65 115 14 8
8 2 24 97 221 34 5
9 1 21 131 402 77 1

10 1 15 148 663 1 63 7
11 9 148 980 3 252
12 5 131 1 312 5 995
13 2 97 1557 10120
14 1 65 1 646 15 61 5
15 1 41 1 557 21 93 3
16 21 1 312 27 98 7
17 10 980 32 403
18 5 663 34 040
g p 1 2 4 11 34 156 1 044 12 346 274 668
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The entries for the number of connected graphs were taken from Cadoga n
[Cl]. A few more can be obtained from Sloane's catalogue [S4] .

TABLE A2

THE NUMBER OF CONNECTED (p, q) GRAPH S

\
0 1 2 3 4 5 6 7 8 9 10 11

	

12 1 3
P

1 1
2 1
3 1 1
4 2 2 1 1
5 3 5 5 4 2 1 1
6 6 13 19 22 20 14 9

	

5 2
7 11 33 67 107 132 138

	

126 9 5
8 23 89 236 486 8141169 1 454

The numbers (Table A3, next page) gp , p < 9, appear in Riordan [R15 ,
p. 146], [HI, p. 214], Oberschelp [01], Robinson [R19], and also in othe r
references. King and Palmer [KP1] used a computer to calculate g p for
p < 24. Cadogan [Cl] calculated c p for p < 8, and Robinson [R19] worke d
out by forp<9 .

The numbers dp of digraphs were computed by Oberschelp [01], as wer e
the symmetric relations for p < 8 . Sloane [S4] lists d p for p < 11 .

TABLE A4

DIGRAPHS

p Digraphs Connected digraphs
Symmetric
relations

1 1 1 2
2 3 2 6
3 16 13 2 0
4 218 199 9 0
5 9 608 9 364 54 4
6 1 540 944 1 530 843 5 09 6
7 882033440 880 471 142 79 26 4
8 1 793 359 192 848

	

1 792 473 955 306 2 208 612



TABLE A3

GRAPH S

P graphs g p connected graphs c p blocks b y

1 1 1
2 2 1 1

3 4 2 1
4 11 6 3
5 34 21 1 0
6 156 112 5 6
7 1044 853 468
8 12 346 11 117 7 123
9 274 668 261080 194 06 6

10 12 005 168 11 716 57 1
11 1 018 997 864
12 165 091 172 59 2
13 50 502 031 367 952
14 29 054 155 657 235 488
15 31 426 485 969 804 308 76 8
16 64 001 015 704 527 557 894 92 8
17 245 935 864 153 532 932 683 719 77 6
18 1 787 577 725 145 611 700 547 878 190 84 8
19 24 637 809 253 125 004 524 383 007 491 432 76 8
20 645 490 122 795 799 841 856 164 638 490 742 749 44 0
21 32 220 272 899 808 983 433 502 244 253 755 283 616 097 664
22 3 070 846 483 094 144 300 637 568 517 187 105 410 586 657 814 27 2
23 559 946 939 699 792 080 597 976 380 819 462 179 812 276 348 458 981 63 2
24 195 704 906 302 078 447 922 174 862 416 726 256 004 122 075 267 063 365 754 368
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Self-dual digraphs with respect to complementation and conversion ,
as well as self-converse relations are now tabulated .

TABLE A5

SELF-DUAL RELATIONS

Self-complementary

	

Self-converse

	

Self-converse
p

	

digraphs

	

digraphs

	

relations

1 1 1 2

2 1 3 8

3 4 10 44
4 10 70 43 6
5 136 708 7 176

6 720 15 248 222 36 8
7 44 224 543 520
8 703 760

The number of labeled finite topologies on p points, which is equal to th e
number of labeled transitive digraphs, has been calculated for p < 7 i n
Evans, Harary, and Lynn [EHL1] . B. Stubblefield has determined thi s
number for n = 8 .

TABLE A6

LABELED FINITE TOPOLOGIES

p Labeled topologie s

1 1
2 4
3 29
4 35 5
5 6 942
6 209 52 7
7 9 535 24 1
8 642 779 354
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For the number of trees, rooted trees, identity trees, and homeomorphic-
ally irreducible trees, we have appropriated the table in [H1, p . 232], which
in turn was taken in part from Riordan [R15, p . 138]. Allen Schwenk at the
University of Michigan has used a computer to calculate all these parameter s
for p < 39 .

TABLE A7

TREE S

p t D T, ip hp p t p Tp

1 1 1 1 1 13 1 301 12 486
2 1 1 0 1 14 3 159 32 973
3 1 2 0 0 15 7741 8781 1
4 2 4 0 1 16 19 320 235 38 1
5 3 9 0 1 17 48 629 634 84 7
6 6 20 0 2 18 123 867 1 721 15 9
7 11 48 1 2 19 317 955 4 688 676
8 23 115 1 4 20 823 065 12 826 22 8
9 47 286 3 5 21 2 144 505 35 221 832

10 106 719 6 10 22 5 623 756 97 055 18 1
11 235 1 842 15 14 23 14 828 074 268 282 85 5
12 551 4 766 29 26 24 39 299 897 743 724 984

25 104 636 890 2 067 174 64 5
26 279793450 5759636510

Paul Stein programmed the computer at the Los Alamos Scientifi c
Laboratory to obtain the number of tournaments for p 5 30, Table A8, nex t
page .

In Table A9, p .246, the entries give 2" (p- 1)/2/p! which we saw in Chapter 9
gives an asymptotic approximation for both the number g p of graphs and
the number T(p) of tournaments with p points . Again these numbers were
kindly provided by Paul Stein .



TABLE A8

TOURNAMENTS

p

	

T(p )

	

1

	

1

	

2

	

1

	

3

	

2

	

4

	

4

	

5

	

1 2

	

6

	

5 6

	

7

	

45 6

	

8

	

6 880

	

9

	

191 53 6

	

10

	

9 733 056

	

11

	

903 753 24 8

	

12

	

154 108 311 16 8

	

13

	

48 542 114 686 91 2

	

14

	

28 401 423 719 122 304

	

15

	

31 021 002 160 355 166 84 8

	

16

	

63 530 415 842 308 265 100 28 8

	

17

	

244 912 778 438 520 759 443 245 82 4

	

18

	

1 783 398 846 284 777 975 419 600 287 23 2

	

19

	

24 605 641 171 260 376 770 598 003 978 281 472

	

20

	

645 022 068 557 873 570 931 850 526 424 042 500 09 6

	

21

	

32 207 364 031 661 175 384 456 332 260 036 660 040 346 62 4

	

22

	

3 070 169 883 150 468 336 193 188 889 176 239 554 269 865 953 280

	

23

	

559 879 382 429 394 075 397 997 876 821 117 309 031 348 506 639 435 77 6

	

24

	

1 956 920 276 575 218 760 843 168 426 608 334 827 851 734 377 775 365 039 898 62 4

	

25

	

131 326 696 677 895 002 131 450 257 709 457 767 557 170 027 052 967 027 982 788 816 89 6

	

26

	

169 484 335 125 246 268 100 514 597 385 576 342 667 201 246 238 506 672 327 765 919 863 947 26 4

	

27

	

421 255 599 848 131 447 082 003 884 098 323 929 861 369 544 621 589 389 269 735 693 986 231 100 612 60 8

	

28

	

2 019 284 625 667 208 265 086 928 694 043 799 677 058 780 746 074 756 618 649 807 453 554 008 410 636 526 845 95 2

	

29

	

18 691 296 182 213 712 407 784 892 577 100 643 237 772 159 079 535 345 610 331 272 616 359 410 643 727 554 822 061 146 11 2

	

30

	

334 493 774 260 141 796 028 606 267 674 709 437 232 608 940 215 918 926 763 659 414 050 175 507 824 571 200 950 884 097 540 096 000



TABLE A9

ASYMPTOTIC NUMBER OF TOURNAMENTS AND GRAPH S

P

1

	

1
2

	

1
3

	

1
4

	

2
5

	

8
6

	

45
7

	

416
8

	

6 65 7
9

	

189372
10

	

9 695 869
11

	

902 597 32 7
12

	

154 043 277 29 7
13

	

48 535 481 831 642
14

	

28 400 190 511 772 27 6
15

	

31 020 581 422 991 798 55 7
16

	

63 530 150 754 287 203 445 810
17

	

244 912 468 225 468 597 942 626 50 7
18

	

1 783 398 168 624 923 337 196 441 201 196
19

	

24 605 638 395 579 573 858 211 783 276 124 62 6
20

	

645 022 047 157 081 180 948 706 971 513 641 417 72 5
21

	

32 207 363 719 989 693 161 641 493 398 185 145 868 257 18 4
22

	

3 070 169 874 550 173 863 332 853 689 226 853 410 359 422 313 75 0
23

	

559 879 381 978 490 975 464 019 198 266 910 789 847 137 671 663 161 69 7
24

	

195 692 027 612 492 717 696 053 131 613 974 749 458 250 743 733 957 146 609 59 9
25

	

131 326 696 669 310 184 928 548 229 462 563 319 608 278 228 391 409 823 336 516 656 55 7
26

	

169 484 335 122 115 195 657 399 862 470 076 055 903 470 709 678 462 703 895 275 433 435 498 63 1
27

	

421 255 599 845 942 668 803 919 924 597 149 559 454 904 184 585 016 179 214 085 529 813 478 905 185 54 6
28

	

2 019 284 625 664 270 536 611 378 920 477 168 898 079 934 218 310 482 029 759 803 193 187 192 943 926 121 612 94 4
29

	

18 691 296 182 206 129 806 987 592 941 623 330 025 693 264 356 626 820 456 495 804 849 429 663 146 992 789 154 562 961 04 4
30

	

334 493 774 260 104 102 715 593 766 508 469 331 712 364 208 913 311 144 737 971 969 122 910 864 452 626 959 027 797 528 575 878 038



Crowd not your table : let your numbers b e
Not more than seven, never less than three .

William King, The Art of Cookery

Appendix II

The first table in this appendix summarizes the frequencies of the digrap h
groups for digraphs of order 4, and corrects four entries of the table in [HP6 ]
where this data first appeared .

TABLE A1 0

ENUMERATION OF FOUR-POINT DIGRAPHS BY AUTOMORPHISM GROU P

Group 0 1 2 3 4 5 6 7 Total

S4 1 0 0 0 0 0 0 1 2
E2S2 0 1 2 3 6 10 6 22 50
E4 0 0 1 7 16 28 32 52 136
S 2 S 2 0 0 1 0 1 0 2 2 6
S2[E2] 0 0 1 0 2 0 4 3 1 0
E 1 S3 0 0 0 2 0 0 2 2 6
E1C3 0 0 0 1 0 0 2 1 4
C4 0 0 0 0 1 0 0 1 2
D4 0 0 0 0 1 0 0 1 2

Total 1 1 5 13 27 38 48 85 218
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The next table displays the data obtained by Stockmeyer [S6] for digraphs
of order 5 . As mentioned in problem P3.4 of Chapter 10, the calculation o f
these numbers requires the knowledge of the entire lattice of subgroups of S 5 .

TABLE Al l

ENUMERATION OF FIVE-POINT DIGRAPHS BY AUTOMORPHISM GROU P

1 2 3 4 5 6 7 8 9 10 > 11

	

Total

0 0 5 28 107 278 591 962 1 314 1 431 3 285 8 00 1
0 1 8 13 43 59 105 124 168 148 521 1190
0 1 0 6 0 22 0 38 0 49 67 18 3
0 0 0 1 0 2 4 2 2 6 11 2 8
0 0 0 1 0 0 0 3 0 0 4 8
0 2 0 7 0 13 0 18 0 26 40 106
0 0 0 0 1 0 0 0 0 1 1 3
1 0 2 2 2 2 7 1 4 8 21 5 0
0 0 1 0 1 0 0 0 2 0 4 8
0 0 0 1 0 0 0 3 0 0 4 8
0 0 0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 3 0 3 0 0 7 1 4
0 0 0 2 0 0 0 1 0 0 3 6
0 0 0 0 0 0 0 0 0 0 1 2

1 5 16 61 154 379 707 1155 1490 1670 3969 960 8

E 5

	

0
E 3 S 2

	

0
S 2 [E Z ]E 1

	

0
E 2C3

	

0
E 1 C4

	

0
E 1 S 2 S 2

	

0
C 5

	

0
E 2 S 3

	

0
C2 C3

	

0
E 1 D4

	

0
D 5

	

0
S 2 S 3

	

0
E 1 S4

	

0
S 5

	

1

Total

	

1

Group

Lines 0



A bird in the hand is worth two in the bush

Aesop's Fable s

Appendix III

CYCLE INDEX FORMULAS FOR TH E
SYMMETRIC GROUPS S„ WITH n 1 0

Z(So) = 1

Z(S1) = s 1

Z(S2)= 2 ( si + s2 )

Z(S3)= 3-(si + 3s 1 s2 + 2s 3 )

Z(S4)= 4(si + 6sis 2 + 8s 1 s3 + 3s2 + 6s4 )

Z(S5)= 5(si + 10sis2 + 20sis 3 + 15s 1 s2 + 30s 1s4 + 20s 2 s3 + 24s5)
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Z(S6)
= 61i

(s6 + 154s2 + 40sis3 + 45sis2 + 90sis4 + 120s 1 s2 s 3

+ 144s 1 s5 + 154, + 90s 2 s4 + 4Os3 + 120s6) .

Z(S7) = , (si + 21sis2 + 70$s3 + 105s1s2 + 2104s4 + 420sis2 s3

+ 504sis5 + 105s 1 s2 + 630s 1 s2 s4 + 280s1 s3

+ 840s 1 s6 + 210s2s3 + 504s2s5 + 420s3s4 + 7204)

Z(S8) = g-(s8 + 28s$s2 + 11244 + 21044 + 4204s4 + 11204s2s3

+ 1344sis 5 + 420sis2 + 2520sis 2s4 + 112044 + 3360s1s 6

+ 1680s1 4s3 + 4032s 1s2 s5 + 3360s 1 s3 s4 + 5760s 1s, + 1054
+ 12604s4 + 1120s2s3 + 3360s2s6 + 2688s3s5 + 1260s4

+ 5040s8)

1
Z(S9 ) = 9(s9 + 36sis2 + 1684'4 + 3784s3 + 756sis4 + 2520sis2s 3

+ 302445 -+ 126044, + 7560sis 2s4 + 33604s3 + 7560sis2s 3
+ 945s 1 s2 + 1008046 + 18144sis2 s5 + 15120sis3 s4

+ 259204s, + 11340s 1 szs4 + 10080s1 s2s3 + 30240s 1 s2 s6
+ 24192s1s 3 s5 + 11340s1 s4 + 45360s 1 s8 + 2520s2s 3

+ 9072s2s5 + 15120s2s3s4 + 25920s 2s, + 2240s3 + 20160s 3 s6
+ 18144s4s5 + 40320s9)

Z(S1 o) = 10 i ° + 45s$s 2 + 240sis3 + 630s6s2 + 1260s1s 4 + 5040s; s2s 3

+ 60484s5 + 315042 + 18900s1s 2 s4 + 84004s3

+ 25200$s6 + 25200sis2s 3 + 60480sis 2 s5 + SO400sis 3 s4
+ 864004s, + 47254s2 + 56700sis2s 4 + 50400s;s2s3
+ 151200s;s2 s6 + 120960sis 3s 5 + 56700sis4 + 226800sis 8
+ 25200s 1 s3s3 + 90720s 1 s2s5 + 151200s 1 s2 s 3 s4 + 259200s 1 s2 s,
+ 22400s 1s3 + 201600s 1 s3s6 + 181440s 1 s4s5 + 403200s 1 s 9
+ 9454 + 18900s2s4 + 25200s2s3 + 75600s2s 6 + 120960s 2 s3s 5
+ 56700s2 s4 + 226800s 2s8 + 50400s3s4 + 172800s 3s,

+ 151200s4s6 + 725764 + 362880s1 o)
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CYCLE INDEX FORMULAS FOR THE
PAIR GROUPS S1,2) WITH n - 10

Z(S(22) ) = s l

Z(SP) = ii (si + 3s 1 s2 + 2s3) .

1
Z(S4 )) = 4(s6 + 6sis2 + 8s3

+ 3s
i

s 2 + 6s 2 s4) .

Z(S52)) = 5 (si° + 10s;sZ + 20s 1 s3 + 15sis2 + 30s 2 si + 20s 1 s 3 s6 + 24s5) .

Z(S(62) ) = 6i (si 5 + 15sis'2 + 40sis3 + 45sis2 + 90s 1 s2s4 + 12Os 1 s2s3s6

+ 144s5 + 15sis2 + 90s 1 s2s4 + 40s3 + 120s3s6) .

Z(S 2)) = (si 1 + 21si 1 s2 + 70s6s3 + 1054s2 + 2104s 2s4

+ 420siss3s6 + 504s 1 s5 + 1054s2 + 630s 1 s2s4 + 280s 3

+ 84Os 3 s6 + 210sis?s 3 s6 + 504s 14 s l °

+ 420s 2 s3s4s 12 + 720s,) .

Z(S8 )) = g (s28 + 28s1 6s+ 112si°s3 + 210s$s;° + 420ss2s4

i + 1120siszs3s 6 + 134444 + 420sis22 + 2520siszs4

+ 1120s 1 s3 + 3360s 1s3 s6 + 1680sis2s3s6 + 4032s 1 s24s l °

+ 3360s2s3s4s 12 + 5760s4 + 105s4s2 2 + 1260sis2s 4

+ 1120s 1 s3s6 + 3360s 1 s3s6 + 2688s3s 5 s 15 + 12604s:

+ 5040s4s8) .
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= 1~ (s 6 + 36si2s2 + 168si 5s3 + 378si 2s2 2 + 7564°s2s4
9 .

+ 2520;44 6 + 302444 + 1260s6s2 5 + 7560sis$4

+ 3360sis3 1 + 75604444 + 945sis2 6 + 10080s;s3s6

+ 181444s24s10 + 15120s 1 s2 s3s4s 12 + 25920s 1 s .5,

+ 11340444 + 1OO8Os l s2s3s6 + 30240s 1s 2 s3s6 + 24192s3 sss 1 5

+ 1134044 + 45360s4s8 + 252OsMs3 s6 + 9072si s2s5si0

+ 1512Os 1 s2s3s4s6s 12 + 2592Os 1s 37 s 14 + 224Os3 2 + 201604 4

+ 18144s 2s44s20 + 403204) .

Z(S (I'd) = 101 (4 5
0
	 1 (si 5 + 45si 9s2 + 2404 1 s$ + 630si ' s24 + 12604 5s2s4

+ 50404 1s2s3s6 + 6048si°s5 + 3150s9s2 $ + 189004s2s 4

+ 840044 3 + 25200s6s 3s6 + 25200sisZS34 + 60480sis2s 5s1 0
+ 504004s2s$s4s 12 + 8640044 + 47254i42° + 567004s2s'4

+ 504004444 + 15120044s34 + 120960s 1 s 3 sss 1 5

+ 56700s1 42s4° + 226800s 1 s4s8 + 252004444

+ 907204s2s5s10 + 1512OOs 1 s2s3s4s6 s 12 + 259200s 1 s2s;s 1 4
+ 224004 5 + 20160044 + 181440s 2s4s5s20 + 403200s 9

+ 9454i42° + 18900444 + 252004444 + 756O0sis2s3s6

+ 120960s I s3sss6s10 s15 + 56700s 1 4s4° + 226800s 1 s4sg

+ 50400s2s3s4s1 2 + 17280Os34s21 + 151200s2 s3s4s6si 2

+ 72576s5 + 362880s5sio) •

Z(S(92) )



It is the custom to ornament every scientific work wit h

a bibliography—to prove the author's competence by

showing the mountain of dross he has sifted to win

one nugget of truth .

Dr. Lawrence J. Peter, hierarchiologis t
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'Tway brillig and the rlithy loves
Did gyre and gimble in the wabe
All mimsy were the borogove s
And the mome raths outgrabe .

Lewis Carroll, Jabberwocky

INDEX OF SYMBOL S

The symbols, letters and notational devices as they are most commonly used in this boo k
are collected here. They are arranged in four categories : Latin letters, Greek letters, script
letters, and operations on graphs .

A(G)

	

adjacency matrix

	

2 4
A„

	

alternating group

	

3 6
B,, number of labeled blocks

	

9
B(x)

	

exponential generating function for labeled blocks

	

9
C,, number of labeled connected graphs

	

7
C,,

	

cyclic group

	

3 6
C(x)

	

exponential generating function for labeled connected graphs

	

8
4CC

	

4 Color Conjecture

	

228
D

	

digraph

	

4
D„

	

dihedral group

	

37
D '

	

converse of D

	

15 1
D *

	

condensation of D

	

21 7
D p (x)

	

generating function for labeled digraphs

	

5
EE4CC

	

Enumeration Equivalent of the 4CC

	

22 8
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E„
G
G p
G p(x)
G(x)
G
G *
Kp
Km .,,
K(j )
L(G )
N(A)
PET
PGET
Pn

Q n

S „
T
Tp
T(x )
T(p )
V(G )
Z(A)
Z(G)
Z ( Sz )
Z(A„ — S )
bc(G )
cp
c(x )
dp
d p (x )
d p
d p, q
dp(x )
d(G )
deg c
e(D)
e( v )
g p
g p . q
g p( x )
g(x)
g v
id c

jk(a )

1(G )
n G
MG )

od r

P

identity group

	

3 7
graph

	

2
number of labeled graphs

	

3
generating function for labeled graphs

	

3
exponential generating function for labeled graphs

	

8
complement of G

	

34
dual of G

	

230
complete graph

	

24
complete bipartite graph

	

9 5
complete m-partite graph for given m-part partition (j) of p

	

10 8
line graph of G

	

22 1
number of orbits of the permutation group A

	

3 9
Polya's Enumeration Theorem

	

4 3
Power Group Enumeration Theorem

	

13 7
path

	

22 8
n-cube

	

11 1
symmetric group

	

3 5
tree

	

20
number of rooted trees

	

52
generating function for rooted trees

	

5 2
number of tournaments

	

124
set of points of G

	

2
cycle index of the permutation group A

	

3 5
cycle index of group of G

	

3 8
cycle index sum of symmetric groups

	

5 2
difference of cycle index sums for A„ and S„

	

49
block-cutpoint tree of G

	

70
number of connected graphs

	

9 0
generating function for connected graphs

	

90
number of digraphs

	

20 0
generating function for digraphs

	

120
number of self-complementary digraphs

	

140
number of (p,q) digraphs

	

16 8
generating function for self-converse digraphs

	

150
diameter of G

	

22 2
degree of r

	

1 1
number of eulerian trails in D

	

2 8
eccentricity

	

22 2
number of graphs

	

90
number of (p,q) graphs

	

8 2
generating function for graphs of order p

	

8 2
generating function for graphs

	

90
number of self-complementary graphs

	

13 9
indegree of v

	

2 5
number of k-cycles

	

3 5
number of labelings of G

	

4
the graph consisting of n disjoint copies of the connected graph G

	

10 8
the number of orientations of G

	

12 7
outdegree of r

	

2 5
number of points

	

2
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q

	

number of line s
r(G)

	

radius of G
s(G)

	

number of symmetries of G
t p

	

number of labeled tree s
t p

	

number of tree s
t,,

	

number of 2-tree s
t(x)

	

generating function for tree s
u, u, w

	

point s
x

	

line or ar c
as

	

point covering numbe r
a,

	

line covering numbe r
point independence numbe r
line independence numbe r

y

	

genu s
F(G)

	

group of G
T,(G)

	

line-group of G
F0 .1 (G)

	

point-line group of G
3

	

minimum degre e
A

	

maximum degre e
0

	

thicknes s
K

	

connectivit y
line-connectivity

v

	

crossing number
coarseness

X

	

chromatic numbe r
X '

	

line-chromatic number
w

	

intersection numbe r
set of all block s

A'

	

set of all rooted block s
A p

	

set of blocks of order p

`6

	

set of connected graph s
set of rooted connected graph s

(6p

	

set of connected graphs of order p
set of all graph s
set of all tree s

AB

	

product of group s
B A

	

power group
BA*

	

restricted power grou p
A x B

	

cartesian product
A[B]

	

composition, wreath produc t
[B] A

	

exponentiation
[A ; B]

	

matrix group
A(f) [B, ,

	

, B,,,] generalized composition grou p
Al Y

	

restriction of A to Y
A(2)

	

pair grou p
A' 21

	

reduced ordered pair group
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It isn ' t really
Anywhere !
It's somewhere else
Instead !

A. A. Milne

INDEX OF DEFINITION S

We have included in the text the definitions of almost all concepts used in this book. For
the convenience of the reader, a few definitions even appear more than once . They are all liste d
in this index. The terminology follows the book on graph theory [H1] which provides a usefu l
supplement .

A

Absolute, of a rooted tree, 6 4
Acyclic, digraph, 1 8
Adjacent points, in a digraph, 4

in a graph, 2
Adjacency matrix, of a graph, 24
Alternating group, 3 6
Anarboricity, 22 5
Arboricity, 22 5
Arc, 4
Area, 237
Automaton, 146

Automorphism, 4, 34
group, 34

B

Balanced, signed graph, 11 8
be—tree, 7 0
Bicolorable graph, 9 9
Bicolored graph, 9 3
Block, 9
Block-cutpoint tree, 70
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C

Cacti, triangular, 72
Cactus, 7 1

A-cactus, 7 2
Cap, 15 9

Cartesian product, of two groups, 9 5
Chromatic number, 22 5
Class function, 163
Clique, 22 2

graph, 22 2
Closed walk, 1 8
Coarseness, 22 5
Colored graph, 1 6
k-colored graph, 1 6
Column equivalent, matrices, 160
Complement, of a digraph, 140, 15 1

of a graph, 34, 13 8
Complete digraph, 13 1

graph, 24
bipartite graph, 9 5
m partite graph, 10 8

Complexity, 225
Component, 6
Composition, of permutation groups, 9 7
Condensation, 12 6
Connected digraph, 12 3

graph, 6
Connected, strongly, 12 6

unilateraly, 21 8
weakly, 123

n-connected graph, 22 4
Connectivity, 223
Converse, cycles, 125
Converse digraph, 15 0
Cover, 22 4
Cup, 159
Cutpoint, 9
Cycle, 1 8
Cycle index, 3 5
Cycle, type 1, type 2, 72
Cyclic group of degree n, 3 6
Cyclic triple, 124

D

Degree, of a permutation group, 3 3
of a point, 1 1

Derived group, 164

Diameter, of a graph, 22 2
of a tree, 79

Digraph of a graph, 12 8
Dihedral group of degree n, 37
d-dimensional lattice graph, 23 6
Dimension of a complex, 23 0

of a simplex, 230
Directed graph, 4

tree, 66
Dissimilar subgraphs, 9 4
Digraph, 4

acyclic, 1 8
complement of, 15 1
complete, 13 1
condensation of, 12 6
connected, 12 3
converse, 15 0
eulerian, 2 6
functional, 69
self-converse, 15 0
strong, 126, 21 7
strongly connected, 12 6
transitive, 21 8
unilateral, 21 8
unilaterally connected, 21 8

E

Eccentricity, 222
A-equivalent, 38

r-sets, 46
Equivalent with respect to (B,, . . . , B,,), 160
Eulerian digraph, 26

graph, 1 1
trail, in a digraph, 2 6

Even graph, 1 1
Exit arc, 2 8
Exponential generating function, 7
Exponentiation, of permutation groups, 98
Extention, of a digraph, 1 8

F

Forest, 58
Functional digraph, 69

G

General graph, 172
Generalized composition group, 179
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Genus . 22 5
Girth, 22 3
Graph, of order p, 2

balanced signed, 11 8
bicolorable, 9 9
bicolored, 9 3
block, 7 1
clique, 22 2
colored, 1 6
k-colored, 1 6
complement of, 34, 13 8
complete, 2 4
complete bipartite, 9 5
complete m-partite, 10 8
connected, 6
n-connected, 22 4
eulerian, 1 1
even, 1 1
general, 172
identity, 20 6
interval, 222
knot, 23 2
labeled, 2
line, 22 1
line-symmetric, 22 1
locally restricted, 8 8
mixed, 12 9
nonseparable, 9
plane, 3 0
point-symmetric, 11 8
rigid circuit, 222
rooted, 6
self-complementary, 13 8
self-negational signed, 15 6
signed, 29, 11 8
super, 104
symmetric, 22 1
total, 222

Group, alternating, 3 6
automorphism, 3 4
composition, 9 7
derived, 16 4
of a digraph, 5
dihedral, 37
exponentiation, 9 8
generalized composition, 17 9
of a graph, 4, 34
identity, 37
line-, 8 3
matrix, 168

ordered pair, 12 3
pair, 8 3
permutation, 3 3
point-line, 10 5
power, 4 1
product, 3 7
reduced ordered pair, 12 0
triad, 230

H

Hamiltonian, graph, digraph, 21 7
Height, of a rooted tree, 80
Homeomorphically irreducible tree, 6 1

I

Identical, permutation groups, 3 5
Identity graph, 206

group, 3 7
tree, 6 4

Incidence, in a digraph, 4
in a graph, 2

Indegree, 5
Independent points, 22 4

lines, 224
Induced subgraph, 100
Initial state, 14 8
Input alphabet, 14 6

function, 146
Intersection number, 22 5
Interval graph, 222
Isomorphic, automata, 14 7

k-colored graphs, 1 6
groups, 34
labeled graphs, 2
rooted graphs, 6

Isomorphism, of graphs, 4

J

Join, 9

K

Knot-graph, 232
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L

Labeled graph, 2
Latin square, 23 1
Line, of a graph, 2

symmetry, 5 6
Line graph, 22 1
Line-chromatic number, 22 5
Line-connectivity, 22 3
Line-covering number, 22 4
Line-group, 83
Line-independence number, 22 4
Line-symmetric graph, 22 1
Locally restricted graph, 8 8
Loops, 2

M

Matrix, adjacency, of a graph, 24
Matrix group, 16 8
Mixed graph, 12 9
Multigraph, 88

N

Nonseparable graph, 9
Number of dissimilar points, in a graph, 5 5

in a 2-tree, 74

0

Object set, 3 3
Orbits, 38
Order, of a graph, 2

of a permutation group, 3 3
Ordered pair group, 12 3
Orientation of a graph, 12 7
Oriented graph, 12 7
Oriented tree, 5 9
Orthogonal Latin squares, 23 1
Outdegree, 5
Output alphabet, 14 6

function, 146

P

Pair group, 8 3
reduced ordered, 120

Partition, of a graph, 8 8
of a tree, 7 9

Path, in a graph, 6
Permutation group, 3 3
Plane graph, 3 0

tree, 66
Planted trees, 60

Point of a digraph, 4
of a graph, 2
of a 2-tree, 7 4
of a simplicial complex, 23 0

Point-covering number, 224
Point-independence number, 22 4
Point-line group, 10 5
Point-symmetric graph, 11 8
Power group, 4 1
Product, of two groups, 3 7
Pure n-complex, 230
Pure two-dimensional simplicial complex, 11 7

R

Radius, of a graph, 22 2
Reduced ordered pair group, 12 0
Removal of a point, 9
Rigid circuit graph, 22 2
Rook's problem 234
Root, 6
Rooted graph, 6

S

Self-complementary graph, 13 8
Self-converse, cycles, 12 5

digraph, 150
Self-negational signed graph, 15 6
Signed graph, 29, 11 8

tree, 66, 79
Similar, 3 8
Simplex, 23 0
Simplicial complex, 23 0
Sink, 218
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Source, in a digraph, 21 8
in an automaton, 14 8

Spans, 24
Square of a graph, 22 1
States, of an automaton, 146
Strength, of a multigraph, 11 7

of a tree, 66
Strong component, 12 6
Strong digraph, 126, 21 7
Strongly connected digraph, 12 6
Subgraph, 6

induced, 100
spanning, 24

Super graph, 104
Superposition, 16 0
Symmetric graph, 22 1
Symmetry line, 56

T

homeomorphically irreducible, 6 1
identity, 64
oriented, 5 9
plane, 6 6
planted, 60
from a point, 2 5
to a point, 2 5
signed, 66, 7 9
2-tree, 74

Triad group, 230
Triangulations of a polygon, 7 6
Triangular cacti, 72

U

Unilateral digraph, 21 8
Unilaterally connected, 21 8

V
Terminal state, 14 9
Thickness, 22 5
Total-chromatic number, 225
Total graph, 222
Tournament, 5
Trail, in a graph, 6
Transitive digraph, 21 8
Transitive triple, 12 4
Transitivity systems, 3 8
Tree, 2 0

be—tree, 70
block-cutpoint, 7 0
directed, 66

Vacuously transitive relation, 15 6

W

Walk, in a graph, 6
in a digraph, 1 8
closed, 1 8

Weight function, 40, 42, 14 1
Weight, of a function, 42, 14 1

of an orbit, 40, 42, 14 1
of a tree, 66, 79
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